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Cancer progression is driven by the accumulation of a small number
of genetic alterations. However, these few driver alterations reside
in a cancer genome alongside tens of thousands of additional muta-
tions termed passengers. Passengers are widely believed to have no
role in cancer, yet many passengers fall within protein-coding genes
and other functional elements that can have potentially deleterious
effects on cancer cells. Here we investigate the potential of moder-
ately deleterious passengers to accumulate and alter the course of
neoplastic progression. Our approach combines evolutionary simu-
lations of cancer progression with an analysis of cancer sequencing
data. From simulations, we find that passengers accumulate and
largely evade natural selection during progression. Although indi-
vidually weak, the collective burden of passengers alters the course
of progression, leading to several oncological phenomena that are
hard to explain with a traditional driver-centric view. We then
tested the predictions of our model using cancer genomics data
and confirmed that many passengers are likely damaging and have
largely evaded negative selection. Finally, we use our model to
explore cancer treatments that exploit the load of passengers by
either (i) increasing the mutation rate or (ii) exacerbating their del-
eterious effects. Though both approaches lead to cancer regression,
the latter is a more effective therapy. Our results suggest a unique
framework for understanding cancer progression as a balance of
driver and passenger mutations.
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Recent advances in sequencing and genotyping of cancer tissues
at a genome level have found that individual cancers contain

tens of thousands of somatic alterations (1–4). These encompass
many genetic alterations, such as single-nucleotide substitutions,
insertions, deletions, rearrangements, Loss Of Heterozygosity
(LOH) events, copy-number alterations, and whole-chromosome
duplications/deletions (1); epigenetic alterations (5); and inherit-
able changes in cell state. It is generally believed that only a few
(2–15) of these alterations cause the cancer phenotype, called
driver alterations or simply drivers, whereas the overwhelming
majority of events in cancer are believed to have nonsignificant
phenotypes and are called passenger alterations or simply pas-
sengers. Drivers confer advantageous phenotypes to neoplastic
cells (i.e., phenotypes that allow cells in the population to pro-
liferate further). This property is inferred by their effect on cancer-
related pathways; frequent occurrence at the same genes, loci, or
pathways in different patients (3, 4, 6); and by the structure of
cancer incidence rates (7). Because driver events are so critical to
cancer progression, their discovery has been the primary goal of
genome-wide cancer sequencing (8).
Conversely, little attention has been paid to passengers, which

constitute the vast majority of observed somatic alterations in
cancer (Table 1) (4). These alterations are assumed to be phe-
notypically neutral in cancer cells because they are nonrecurrent
and are dispersed across a cancer genome (8, 9); however, their
phenotype has never been systematically tested. If passengers
arise as random alterations, then many can be deleterious to
cancer cells (10–12), potentially via proteotoxic stress (13, 14),

loss of function (15), provoking an immune response (16), or
other mechanisms. Though highly deleterious passengers are
weeded out by negative selection, moderately deleterious pas-
sengers can evade negative selection and accumulate by muta-
tion-selection balance, ratcheting, or similar mechanisms studied
in population genetics (17). Because cancer genomes contain
hundreds to thousands of accumulated protein-coding pas-
sengers, they may individually exert small effect, yet collectively
be significant enough to alter the course of cancer progression.
Here we investigate the possible role of deleterious passenger

alterations in cancer progression and examine their potential as
an unexploited therapeutic target. First, using an evolutionary
model, where passengers can arise alongside drivers in cancer
cells, we find that moderately deleterious mutations evade pu-
rifying selection and accumulate. The accumulation of pas-
sengers alters the dynamics of cancer progression and may
explain several clinical phenomena, such as slow progression,
long periods of dormancy, the prevalence of small subclinical
cancers, spontaneous regression, and heterogeneity in growth
rates. These phenomenon cannot be easily explained without
considering deleterious passengers. Unlike the current driver-
centric paradigm of cancer progression, our analyses demon-
strate that progression depends on drivers overcoming pas-
sengers. Second, we test the model’s predictions by analyzing
somatic mutations sequenced in cancers. This analysis shows
that, in agreement with the model, individual passengers are
likely to be damaging to cells and have largely evaded negative
selection. Third, we use our model to explore two possible
therapeutic approaches that target passengers and find that in-
creasing either the mutation rate or the deleterious effect of
passengers leads to cancer meltdown. The latter therapy may be
possible by targeting pathways that buffer the effects of muta-
tions, e.g., unfolded protein response (UPR) pathways. Finally,
we present and discuss clinical and biological evidence that
supports an important role of passenger alterations in cancer.

Results and Discussion
Evolutionary Model of Cancer Progression Incorporating Passengers.
Existing evolutionary models of cancer progression have several
limitations. Many models have considered a population of a con-
stant or externally controlled size (18, 19), which does not depend
on the absolute fitness of cells. Other models study exponentially
growing cancer populations (7, 19, 20), whereas logistic-like be-
havior has been observed in cancer (21). Most importantly, the
vast majority of cancer models (with the exception of ref. 22; see
below) neglect the effects of passenger alterations.
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In our stochastic model, individual cells can divide, potentially
acquiring driver or passenger alterations, and die. Population size
changes with the birth and death of individual cells (Fig. 1A).
Generally, the birth and death rates of a cell depend on the
effect of accumulated drivers and passengers, and the environ-
ment. Assuming that all drivers/passengers possess equal fitness
advantage/disadvantage, the birth and death rates B(d,p,N) and
D(d,p,N) of each cell depend on the number of drivers d, the
number of passengers p, and the total hyperplasia or population
size N. Driver mutations increase population size by either in-
creasing the birth rate (e.g., an activating mutation in KRAS) or
by decreasing the death rate [e.g., a TP53 knockout that
diminishes contact inhibition (23) and apoptosis]. Though spe-
cific drivers and passengers will have differing effects on the birth
and death rates, we find that aggregating the effects of mutations
into the birth rate, and placing the effects of population size into
the death rate, does not alter population dynamics from models
where mutational effects are split between the two (SI Appendix,
Fig. S1). Thus, we use
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�
N
�
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[1]

where sd is the fitness advantage (selection coefficient) of a driver,
sp is the fitness disadvantage conferred by a passenger, and K is
the initial equilibrium population size—reflecting the effects of
the tumor microenvironment. This model assumes multiplicative
epistasis and is equivalent or similar to other possible forms (SI
Appendix, SI Text), which all exhibit qualitatively similar behavior

(SI Appendix, Fig. S1). We also let D(N) = log(1 + N/K), for
large cancers (grown to 106 cells). For small N/K this reduces to
the linear model above [similar to previous neoplastic (24) and
ecological (25) models], but for large N/K this recapitulates
Gompertzian dynamics observed experimentally for large tumors
(26). The death rate’s dependence on population size is a coarse
approximation of many size-dependent factors that tumors must
overcome as they expand via additional drivers: contact inhibi-
tion, competition between cells for space and resources (e.g., due
to a limited crypt size), homeostatic pressure, hypoxia, angio-
genesis, limited paracrine signaling, and immune/inflammatory
responses to larger tumors (16).
We model cancer progression as a stochastic system of birth

(with or without mutations) and death events with defined re-
action rates using a standard Gillespie algorithm (27). The sys-
tem is fully defined by five parameters: sp, sd, μTp, μTd, and K, where
μ is the mutation rate and Td/p are the mutation target sizes for
drivers/passengers. Though driver and passenger alterations
take many forms, we parameterized our model using single-
nucleotide substitution data, as these mutations have been more
thoroughly quantified. Because of extensive cancer heterogeneity
and limited quantitative knowledge, we varied all parameters by
2–3 orders of magnitude. The ranges we explored centered on
values obtained from the literature (SI Appendix, Table S1). The
mutation rate (μ ∼10−8 nt−1 × division−1; range 10−10–10−6)
approximates cells with a mutator phenotype (28). Our initial
equilibrium population size (K ∼103 cells; range 102–104) was
estimated from hyperplasias within a mouse colonic crypt ob-
served 2 wk after an initiating APC deletion (29). The target size
for drivers (Td ∼700 nt; range 70–7,000) approximately 10 po-
tential hotspot mutations per gene (oncogene or tumor sup-
pressor) times 70 driver genes (4). This value was used in
previous simulations (19) and is close to the 571 loci with re-
current mutations in colon cancer (30). The target size for
functional (nonsynonymous) passengers (Tp ∼5 × 106 nt; range 5 ×
105 – 5 × 107) was estimated as 103 nonsynonymous loci per gene
times 5,000 well-expressed, non–cancer-related genes in cancer
(9). This value is comparable, but less than, a previous estimate of
10 million deleterious loci in cancer (31); does not attempt to
capture the 104–105 noncoding passenger mutations per cancer
genome (2, 32); and yet is thousands of times greater than Td. The
chosen driver strength [sd ∼0.1 (i.e., 10% growth increase per
driver); range 0.01–1] was shown to be congruent with cancer
onset (19). Passenger deleteriousness (sp ∼10−3; range 10−1–10−4)
was estimated from to the effects of near-neutral germ-line muta-
tions in humans (33) and randomly introduced mutations in yeast
(14). Simulations where drivers or passengers conferred a distribu-
tion of sp and sd did not significantly differ from our fixed-effect

Table 1. Passenger mutations in whole-genome sequences

Cancer(s)
Protein-coding

mutations Driver mutations* Ref(s).

11 breast 115.4 5.1 (4)
10 colon 75 4 (4)
4 astrocytomas 206 5.5 (52)
Acute myeloid leukemia 10 2 (53)
26 melanomas 366 4 (1, 32)
Small-cell lung 100 4 (2)

In most tumors, hundreds of protein-coding mutations accrue, yet only
a few are putative drivers. These values are consistent with our model’s
results. Deleterious passengers may be most exploitable in carcinomas, be-
cause leukemia and many blood cancers are generally more sensitive to DNA
damage and have earlier incidence rates.
*Classified as drivers by COSMIC (8).
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Fig. 1. Dynamics of cancer progression. (A) Our evolutionary model: individual cancer cells stochastically divide (potentially acquiring new drivers/passengers) and
die. A new driver increases the birth rate by sd, whereas a passenger decreases it by sp (Eq. 1). Drivers arise rarely, but have large effects, while passengers are
common, but have small individual effects. (B) Simulated cancer progression using a Gompertz death rate; despite identical parameters, trajectories exhibit markedly
different behavior, sometimes regressing to extinction or having long periods of dormancy. (C) The number of accumulated passengers increases with mutation rate
and depends, nonmonotonically, on passenger strength.
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model (SI Appendix, Fig. S1 and discussed below), suggesting that
this fixed-effect model adequately captures cancer dynamics. We
find that deleterious passengers accumulate under a broad range of
conditions (SI Appendix, Fig. S2).
We consider death to be any process that prevents a cell from

replicating indefinitely, i.e., necrosis, apoptosis, senescence, or
differentiation. Thus, N represents only cells capable of infinite
division and of carrying the (epi)genetic information in cancer.
For this reason, our model lacks asymmetric cell divisions, as this
yields differentiated cells. Because we explored the initial pop-
ulation size across two orders of magnitude, our model applies
equally well to tumor subtypes dominated by only a small cohort
of cancer stem cells and subtypes where cancer may arise from
progenitor cells (34). Our model ignores the spatial structure of
cancer. Previous studies of asexual populations suggest that ig-
noring spatial structure will (i) underestimate the time for ben-
eficial drivers to sweep through the population and hence the
degree of clonal interference, and (ii) overestimate the effective
strength of selection, which only acts at the geographic boundary
between clones (35, 36). Hence, models considering spatial
structure should find that more passengers fixate relative to those
that do not, strengthening the conclusions of our model.

Moderately Deleterious Passengers Fixate and Alter Cancer Progression.
Fig. 1B presents typical population trajectories of cancer beginning
at the first driver mutation. All trajectories consist of intervals
of rapid growth and gradual decline. A new driver leads to
a clonal expansion of the subpopulation carrying this driver,
causing short periods of rapid growth. Growth stops when the
effect of this driver is balanced by the death rate, which
increases with population size. While the population waits for
the next driver to arise, passengers steadily accumulate, causing
a gradual decline of population size. Together, these processes
cause trajectories to grow in a sawtooth pattern.
Simulated tumors exhibit either unconstrained growth or re-

gression, often after a period of dormancy (Fig. 1B). We find that
the probability of either outcome depends on the tumor size:
tumors larger than a critical size (Ncritical) are likely to progress,
whereas smaller tumors are likely to regress (SI Appendix, Fig.
S3). Indeed, larger populations acquire drivers more frequently,
as they have more cells in which drivers can arise. Moreover,
natural selection weeds out deleterious mutations more effi-
ciently in larger populations (Fig. 2B). The phenomena of dor-
mancy and spontaneous regression, observed both in our model
and clinically (37), do not occur in models lacking deleterious
passengers. In SI Appendix, SI Text, we estimate Ncritical for
cancer and provide a framework for understanding where dele-
terious passengers are most relevant (SI Appendix, Fig. S4).
Importantly, simulations show that hyperplasias that progress to

clinical size (i.e., 106 cells, 15–20 drivers) accumulate many dele-
terious passengers. Evasion of purifying selection and fixation of
deleterious passengers is an unexpected result not programmed
into the model. Although the exact number of accumulated pas-
sengers depends on μ and sp (Fig. 1C), 102–103 deleterious pas-
sengers are obtained for a broad range of parameters, consistent
with the numbers of nonsynonymous substitutions observed in
cancer genomics studies (Table 1), suggesting that observed pas-
sengers in sequencing data can be moderately deleterious.
We then studied how deleterious mutations can accumulate

despite negative selection. Previous studies have calculated the
rate of accumulation of deleterious mutations in the absence of
clonal expansions (38–40). We identified two previously known
processes that allow passengers to evade negative selection in
cancer: hitchhiking alongside a driver and Muller’s ratchet (25)
(Fig. 2). Deleterious passengers hitchhike when the cell they re-
side in acquires a new driver, which then leads to a clonal ex-
pansion and fixation of all the mutations in that cell. Muller’s
ratchet, in turn, is a process of gradual accumulation of deleterious
mutations and population decline in the absence of drivers. In
Muller’s ratchet, a mutation-selection balance arises after driver
sweeps, which creates a steady-state Poisson distribution of the

number of passengers per cell with mean and variance μTp/sp (first
described in ref. 41; SI Appendix, SI Text and Fig. S5). The fittest
subpopulation—cells with the fewest passengers: ∼NExp½−μTp=sp�
cells—is much smaller than the whole population, so it can
spontaneously shrink to extinction (Fig. 2C). When back muta-
tions are rare, such an extinction leads to the irreversible loss of
this least-mutated fraction of cell and corresponds to a “click” of
Muller’s ratchet (25). This process is especially rapid during
clonal expansions when the size of the expanding clone is small.
Both of the above processes, well known in population genetics,
are augmented in cancer because of the presence of strong
drivers.
Simulations show that moderately deleterious, rather than highly

deleterious or neutral, passengers have a major effect on cancer
progression (Fig. 3A). Indeed, almost-neutral passengers have
very little effect on cancer cells, and passengers of large effect do
not accumulate (31). By slowing progression to cancer, moder-
ately deleterious passengers accumulate in even greater numbers
than neutral mutations despite their slower accumulation rate
(Fig. 3A). Importantly, we find that moderately deleterious
passengers affect progression for sp from 10−3 to 2 × 10−2, which
subsumes the best literature estimates of the strength of

A

B

C

Fig. 2. Mechanisms of passenger accumulation. (A) Spurts of population
growth, caused by the acquisition of a new driver, are interspersed with
a gradual decline due to passenger accumulation. (B) Passengers accumulate
both steadily between the arrival of drivers and by hitchhiking during clonal
expansions. (C) Each subclone, containing a unique number of passengers
(shown by color), grows and declines stochastically, eventually to extinction.
In between drivers, the population becomes heterogeneous. A new driver
will promotes only one clone, creating a clonal population. Afterward, new
mutations on top of the previous hitchhikers restore heterogeneity.
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering

E ectively neutral
(µ Tp sp << sd )

Strongly deleterious
(N sp Exp[-µ Tp /sp ]~1)

Mildly deleterious
A B

C

Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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molecular function) validates its use for characterizing somatic
cancer mutations. The exceptionally high ΔPSIC scores for these
mutations are consistent with our third prediction that drivers
must be of strong effect.
Most importantly, passenger mutations exhibit ΔPSIC values

that are on average much greater than neutral mutations (Fig.
4A; P < 10−33); therefore, many passengers affect conserved
residues and are likely damaging to protein function. This result
clearly demonstrates that passenger mutations are nonneutral.
To ensure that our set of putative passenger mutations was not
contaminated by drivers, we increased our stringency of pas-
senger classification, but found no statistically significant change
(P = 0.69) in mean ΔPSIC (SI Appendix, SI Text); additional
safeguards are explored below.
Passengers exhibit ΔPSIC values much lower than drivers (Fig.

3A), supporting the assumption of our evolutionary model that
deleterious passengers are generally much weaker than drivers
(sp << sd). The ΔPSIC values of passengers are close to, but lower
than, values of randomly generated mutations (Fig. 3A; P < 10−15),
suggesting that many passenger mutations evade purifying selec-
tion. Still, a statistically significant difference between these two
sets demonstrates slight negative selection against the most dele-
terious passengers. This comparison of passengers and random
mutations fully supports our model’s prediction that selection
against moderately deleterious passengers is largely ineffective in
neoplastic progression (Fig. 3C).
To rule out possible caveats where passengers have damaging

effects on protein function but no effect on the fitness of cancer
cells, we performed additional tests. For example, passengers with
deleterious scores could affect only genes that are functionally
unimportant or not expressed in cancer cells. Thus, we considered
only passengers in essential and ubiquitously expressed house-
keeping genes, but still observe equally high ΔPSIC scores (Fig.
4B). This eliminates the possibility that damaging passengers are
not expressed or present in unimportant genes. Alternatively,
perhaps only recessive heterozygous passengers exhibit high
ΔPSIC scores; if so, cell fitness would remain unchanged because
the other allele provides sufficient functionality. We observe
equally high ΔPSIC scores for homozygous passengers (which can
arise via LOH events or chromosomal losses), refuting this pos-
sibility (Fig. 4B). Collectively, our analyses show that signatures of
damaging mutations are ubiquitous in known passengers and likely
affect the fitness of cancerous cells.
As an alternative powerful test, we assayed for signatures of

selection in driver and passenger genes by comparing the observed
ratio of nonsynonymous to synonymous mutations (ω) to the
predicted ratio using a random model of mutations (SI Appendix,
Fig. S7). This distribution reaffirmed COSMIC’s driver and pas-
senger classifications. Genes with ω < 1 likely experience purifying
selection and these genes were generally classified as passengers by
COSMIC. Conversely, genes with ω > 1 likely experience positive
selection and were nearly all classified as drivers by COSMIC.
Most importantly, the shape of this distribution corroborates the
narrative of a few strong drivers overlaid with copious passengers
experiencing nearly undetectable negative selection that we ob-
serve in both our modeling and ΔPSIC analysis: A total of 94%
of genes had an observed ω < 1, and their occurrence was only
very moderately enriched relative to our neutral model—on the
fringe of statistical significance: P = 0.012—and not nearly as
pronounced as the signal for drivers. The rare driver genes, with
ω > 1, often exhibited extreme nonsynonymous substitution rates
vastly greater than expected from a neutral model of evolution: ω
of KRAS, TP53, BRAF, and PTEN were all greater than 40.
Though our genomic analysis of passenger mutations focused

on missense substitutions, our model is generalizable to all in-
heritable (epi)genetic alterations, including those that are pres-
ent at low frequency in the cancer population. Indeed, the length
distribution of somatic copy number alterations (SCNAs) in
cancer suggests these alterations are under purifying selection
as well (44). Hence, the total load of accumulated deleterious

passengers in cancer may be greater than that estimated from
single nucleotide mutations detected in genome sequencing.

Accumulated Passenger Mutations Can Be Exploited for Cancer
Treatment. Using our evolutionary model, we probed how can-
cers that accumulated passenger alterations respond to passen-
ger-centric treatments. We tested two strategies: (i) increasing
the overall mutation rate (μ), thus increasing the rate of pas-
senger accumulation, and (ii) magnifying the deleterious effect
of passengers (sp), as described below. Both strategies reduce
cancer size (Fig. 5); however, mutagenic strategies require more
severe increases (∼50-fold) in the mutation rate to succeed (Fig.
5A), whereas fivefold magnifications of deleterious effect suffice.
Even with large mutation rate increases, the probability of 5-y
relapse following treatment initiation is considerable (Fig. 5B).
This behavior resembles patient responses to existing chemo-
therapeutic agents that elevate mutation rates.
In practice, increasing the deleterious effect of passengers, both

mutations and chromosomal alterations (45), could be achieved by
inhibiting cellular mechanisms that buffer against the effects of
mutations or incorrect protein dosage (14). Hence, deleterious ef-
fect could be increased by targeting chaperones, proteasomes, or
other components of UPR pathways (46); or by elevating ER stress
(47); or by stimulating protein misfolding using hyperthermia (48).
These passenger-mediated therapies should specifically affect can-
cer cells because somatic mutations are generally rarer in normal
tissues (9). For example, a recent study of clonal mosaicism in hu-
man brains found only 1.5 SCNAs per adult sample (49), whereas
a recent pan-cancer survey found 42 SCNAs per cancer (3).
Several experiments support this strategy of exacerbating pas-

sengers’ effect. First, chaperones are widely expressed in cancer,
indicative of poor prognosis (50), and their inhibition (or pro-
teasome inhibition) exhibits antitumor activity (46). Though other
specific roles of chaperons and proteasomes in cancer were pro-
posed, our framework suggests that cancers buffer against the
effects of passenger alterations using UPR machinery. In our
paradigm, inhibiting the UPR unleashes the effects of accumulated

A

B

Fig. 5. Deleterious passengers can be exploited for treatment. (A) Cancers
grown to 106 cells are treated by increasing the mutation rate (green) or
deleterious effect of passengers (magenta). Both strategies lead to reduction
in cancer size. (B) Much smaller increase of the deleterious effect of pas-
sengers is sufficient to prevent 5-y relapse.
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passengers. Recent discoveries that aneuploidy and chromosomal
imbalance lead to proteotoxic stress (45) and a dependence on the
UPR for survival (47), and that very high levels of DNA damage
correlate with better clinical outcomes (43, 51) (a paradoxical
result in the classical paradigm of cancer), are consistent with
our framework.
One of the major limitations of driver-targeted therapies is

that they can be defeated by a cancer’s ability to rapidly evolve
resistance by acquiring new mutations. Our approach, of in-
creasing the deleterious effects of passengers, is different as it
targets not only existing cancer cells, but also cancer’s ability to
accumulate new mutations and thus its evolvability.
Cancer research has focused primarily on driver alterations

with little attention to the overwhelming majority of potentially
harmful passenger alterations that arise along the way. To the
best of our knowledge, this “dark matter” of cancer genomes has
not yet been explored. We developed an evolutionary model of
cancer progression that clearly demonstrates that deleterious
passengers can accumulate in cancer, while our genomic analysis
confirms that passengers presented in sequenced cancers have

damaging phenotypes. Importantly, considering cancers as
a balance between drivers and deleterious passengers repro-
duces many observed phenomena in cancer, including (i) slow
initial and rapid late growth; (ii) a critical cancer size for
dormancy or spontaneous regression; and (iii) short-term re-
sponse to mutagenic therapies (SI Appendix, Table S2). These
phenomena were not preprogrammed into the model, suggesting
that the deleterious effect of passengers explains many properties
of cancers.

Materials and Methods
Simulations were executed using the Next Reaction (27), a Gillespie algo-
rithm. All cancer mutations were collected from COSMIC version 42 (30). See
SI Appendix, SI Text for details.
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Design of our model for neoplastic growth.  Cells in our populations were fully described by their 
number of drivers d and passengers p. Birth and death events were modeled using an implementation of 
the Next Reaction (1), a Gillespie Algorithm that orders events using a Heap Queue. Generation time in 
our model was defined as the inverse of the mean birth rate of the population: 1/ <B(d, p)>. All mutation 
events occurred during cell division. If mutations occur per unit of time, rather than per generation, we 
would expect that rapidly growing tumors would acquire drivers slower because generation times shrink 
as the growth rate increases. Likewise, we would expect that rapidly declining populations would 
acquire passengers faster. Because µTp exceeds 1 for large mutation rates, each daughter cell acquires a 
Poisson-distributed, pseudo-random number of new passenger mutations from its parent, with mean 
µTp.  

 

Estimating and exploring the parameters and functional form of the model. To account for the 
extensive heterogeneity of cancer between and within sub-types, and to account for our limited 
quantitative knowledge of cancer, we varied the values of all parameters by 2-3 orders of magnitude. 
The ranges we explored centered about values derived from the literature (Table S1). We found that 
deleterious passenger mutations accumulate under this broad range of conditions (Fig. S2).  

The effect of each driver was assumed to be very significant (sd ≈  0.1, i.e. individual drivers increase the 
growth rate by 10%) because previous studies found this rate to be congruent with the time to cancer 
onset (2). Simulations with fixed sd were varied between 0.001 and 1. Simulations, where drivers 
conferred a Gaussian or exponential distribution of fitness advantages did not differ qualitatively from 
our fixed-effect model (Fig. S1). 

Recent estimates of the effects of near-neutral germ line mutations in humans (3), as well as randomly 
introduced mutations in yeast (4), suggest the disadvantage conferred by a passenger is very weak (sp ≈ 
0.001, range 10-4 – 10-1). Like drivers, we simulated trajectories with passenger mutations drawn from 
several potential fitness distributions (5). The effect of each passenger x, was drawn from either an 
exponential distribution, a Log-Normal distribution, or a Gamma distribution with the following density 
functions.   
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All distributions have mean value sp = 0.001. The probability of fixation of passengers declined only for 
very deleterious passengers (Fig. 3B, Fig. S1).   



The target size for driver mutations Td, represents all relevant sites in all genes associated with cancer 
development (i.e. mutational hot spots in oncogenes and tumor suppressors). Our estimate, Td ≈ 700 
positions per genome represents 70 genes [estimated in (6)] times approximately 10 activating 
mutations per gene (range 70-7,000). This value has been used previously in simulations (2), is projected 
from current sequencing data, and is approximately equal in number to the 571 loci with observed 
recurrent mutations in colon cancer (7). While the number of potentially inactivating mutations for any 
tumor suppressors is certainly larger than 10 per gene, and mutational effects should remain silent until 
a LOH event, for parsimony we assume that these nuances collectively result in an effective target size 
for a tumor suppressor that is still approximately 10. Because the number of observed mutations in 
major oncogenes is of the same order as the observed number of mutations in major tumor suppressors 
(7), we assume this approximation is reasonable.  

Our estimate for the target size of potentially deleterious passengers represents ~5,000 non-cancer 
related genes expressed in cancer multiplied by ~1,000 non-synonymous and non-neutral loci per gene. 
This quantity is significantly smaller than the entire protein-coding genome and even previous estimates 
of deleterious loci in cancer of 10,000,000 (8) because our model is intently focused on the subset of loci 
in the genome that have intermediate deleterious effect (Fig. S6). Hence, we are ignoring loci with 
either neutral or lethal effect. Nevertheless, Tp is almost ten thousand times the target size for drivers. 
The mutation rate (µ  ≈ 10-8 nucleotide-1 ∙division-1 , range 10-10  – 10-6) approximates cells that have 
acquired a mutator phenotype (9). The initial equilibrium population size (K  ≈  1,000, range 100 – 
10,000) is on the order of the population size of the niche in which carcinomas originate (i.e. the colonic 
crypt size, lung alveoli size, etc). We estimated this quantity from the observed size of hyperplasias 
within a mouse colonic crypt 2 weeks following an initiating APC deletion (10).  

Collectively, our choice of form and parameters for our model appears appropriate to cancer. Our model 
exhibits many of the key features of tumor progression without being pre-programed to do so (Table 
S2). 

 

Estimating the critical population size. The occurrence of a critical population size can be 
understood using classical population genetics theory and several simplifying approximations. If we 

assume )(),( NDpdB   [verified in (Fig. S1)] and consider the accumulation of advantageous drivers 

and deleterious passengers as independent processes, then the change in population size can be written 
as: 

pd vv
dt
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Where νd is the increase in population per unit time (velocity) due to fixation of drivers and νp is the 
decrease in population per unit time due passenger fixation. New drivers and passengers arise in the 

population with rates 
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for a mildly deleterious passenger that fixates at an effectively neutral rate (which is expected for high 
mutation rates or small effect size, as we will show below). Once fixated, each mutation alters the 
population size by ΔNd = Nd+1 - Nd and ΔNp = Np+1 - Np respectively. Evoking the earlier assumption: 



B(d,p,Nd )  D(d,p,Nd ) , and



B(d 1,p,Nd 1)  D(d 1,p,Nd 1), yields ΔNd ≈ Nsd  and ΔNp ≈ Nsp. 



Upon multiplying the probability of occurrence of a mutation, the probability that it fixates, and the 
resulting change in population size, we obtain: 
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Thus, the population, on average, will decline for small N and increase for large N. Ncritical represents an 
unstable fixed point, which roughly corresponds to the observed critical population size in our 
simulations (Fig. S3). 

 

Accumulation of passengers of fixed-effect. The rate of accumulation of deleterious mutations, in 
the absence of clonal expansions, has been well studied previously (11–14) . Here we use existing 
theories to describe how passengers accumulate. In the absence of drivers, the critical parameters are: 
N, sp, and µp, where  µp = µTp is the genome-wide passenger mutation rate. The evolution dynamics of 
passenger accumulation strongly depends upon λ = µp/sp, which represents the strength of mutation 
relative to natural selection. 

Unless λ is very large, the population is approximately in mutation selection balance between passenger 
fixation events. This means that the increase in passengers load via mutations is balance by natural 
selection: 

  (       )   (   ̅)     

Here, the number of cells with P passengers is nP and  ̅ corresponds to the mean number of passengers 
in the population. This mutation selection balance leads to a stationary distribution of nP of the following 
form: 

                  
  

  
    

Note that this solution takes the shape of a Poisson distribution with mean and variance λ (Fig. S5). 

When     , mutations are so rare and/or passengers are so deleterious that essentially only two 
alleles segregate in the population. In these circumstances, the exact probability that a mutation fixates 
(Π) is described in (11) and is: 
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Note that this expression assumes a particular dynamics known as a Moran process. The probability of 
fixation declines very steeply as sp or N increase.  



For larger λ, the population with the least number of passengers, also known as the fittest class, is only a 

fraction of the total population size,        . Therefore, this fittest class can stochastically go extinct 
due to fluctuations in population size. This extinction is irreversible, so the population must shift to a 
lower fitness value in a process known as Muller’s Ratchet. For moderately large λ, the time between 
ratcheting events Tclick was calculated in (12, 15, 16) as: 
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For even larger λ (when         ), the time between the clicks of the ratchet becomes so short that 

there is insufficient time for the population to reach mutation selection balance. In this regime the 
system can be approximated by a traveling wave with the accumulation rate v (13), given by : 
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For very large λ, mutations are effectively neutral and the accumulation rate becomes μp.  

Muller’s Ratchet, the traveling wave solution, and the neutral approximation collectively explain the rate 
of passenger accumulation in the absence of driver mutations across time scales relevant to cancer 
progression (Fig. S4).  

 

Accumulation of passengers of varying effect. When deleterious mutations are drawn from a 
distribution of effect sizes, estimating their accumulation rate becomes more complicated and rigorous 
analytical treatment of this situation has not been published to our knowledge. However, we will offer 
an approximate treatment in the limit of small λ here. Figure 3B demonstrates that the population 
fitness distributions remain constant between the fixed-effect and variable effect models, with one 

caveat: the mean and variance of fitness relative to the fittest class are now  ̅       ̅. Here,   ̅ 

represents the mean deleteriousness of a passenger. While  ̅ is relatively large in Figure 3B 
(approximately 50), this congruence should presumably hold so long as mutation effect sizes are 
generally smaller than the width of fitness distribution. Obviously, if the variance of the distribution of 
fitness were very large or undefined (e.g. the variance of a power-law distribution) this approximation 
may not hold. So long as this is not the case, a new mutation, with its particular fitness effect   ̂, has, in 

the limit of small  ̅, a fixation probability of 

    ̂ (  (    ̂)
    [  ̅]

) 

Here we used the fixation probability in the weak mutation limit, but with population size described by 
the size of the fittest class. For small λ, it is clear that mutations in the deleterious tail, where   ̂    ̅, 

will fixate in this model more often than in a model where all passengers exhibit effect an effect size of 
  ̂. Indeed, in the fixed-effect model, as mutations become more deleterious they 1) are less likely to 

fixate in a fittest class of equivalent size, and 2) increase the size of this fittest class—further reducing 
their probability of fixation. However in a distribution of effect sizes, the size of the fittest class is 
defined by   ̅ not   ̂. Hence, these rare, very deleterious, mutations only reduce their probability of 

fixation in the fittest class, but do not affect the size of this fittest class. Their fixation probability then 
declines less rapidly than one might expect from the fixed-effect model (Fig. 3B). 

For large  ̅, accumulation rates are high and well approximated by a neutral model (Fig. S4), so we 
expect at most a modest effect of   ̂ relative to    ̅  on the rate of accumulation, although we know of 



no existing theory that describes this scenario. The fixation rate should still exhibit some decline, if the 
fitness distribution has a long deleterious tail—as illustrated in Figure 3B, S1E and S1F. 

When considering the effects of treatment strategies on passengers of varying effect, it is important to 
keep in mind that nearly all of the passengers residing in a population that progress to cancer have 
fixated. Therefore, nearly all of the effects of increased selection against passengers will be on 
mutations that cannot change in frequency in the population. For this reason, cancers grown under 
previously estimated parameters with passengers drawn from an exponential distribution exhibited 
similar relapse rate as cancers grown under the fixed effect model.  

 

Analysis of somatic mutations in cancer. All cancer mutations were collected from the ongoing 
COSMIC database at http://www.sanger.ac.uk/genetics/CGP/cosmic/ (7).  COSMIC and TCGA, along with 
other cancer genomics consortia, have focused on identifying driver mutations (i.e. distinguishing 
drivers from passengers) by their recurrence in multiple patients or samples (7). Using COSMIC, we 
identified 4,195 missense passenger mutations (non-synonymous, amino acid changes) from a total of 
116,977 mutations. We defined a mutation as a passenger if it arose in a gene not listed in the census of 
possible cancer-causing genes (17). These 4,195 ‘passenger’ mutations show no recurrence and are 
dispersed across 3,172 genes, further supporting their classification as passengers. We then contrasted 
these mutations with driver mutations and three reference datasets: 1) benign, common human non-
synonymous SNPs; 2) simulated de novo mutations (randomly generated using a cancer-specific 3-
parameter model described in detail below); and 3) damaging, pathogenic missense mutations causing 
Mendelian human diseases (from the Human Gene Mutation Database, HGMD). Common SNPs and 
disease causing mutations were obtained previously for validation of POLYPHEN2 (18). In our more 
stringent classification of passenger mutations, we discarded: 1) all passengers in genes that harbored 
more than one passenger, 2) passengers in any genes where ω > 1 (Fig. S7), and 3) passengers that were 
not ‘confirmed’ somatic mutations in the COSMIC dataset (only 29.4% of mutations in the database 
were ‘confirmed’ by follow-up Sanger sequencing). Mean ΔPSIC  for this stringent set of passengers did 
not different significantly (p <0.69) from our original set, so it was not used for further controls as it 
greatly reduced sample size. 

To stratify passengers into various subsets, we used several resources. 372 passenger mutations were 
classified as ‘Homozygous’ by COSMIC, presumably due to some kind of Loss of Heterozygosity event. 
‘Housekeeping’ genes, were  195 genes with passenger mutations and with one-to-one orthologs in S. 
cerevisiae, identified using InParanoid (19). These genes are well expressed in humans, so we believe it 
is highly likely that they are expressed in cancer. We could not directly normalize mutations in our 
dataset by their expression levels because mutations in the COSMIC database derive from varied 
literature sources (which often lack direct expression data). 881 non-COSMIC, non-synonymous 
passenger mutations were obtained from The Cancer Genome Atlas’ analysis of 38 Multiple Myeloma 
genomes (20). This subset was used as a control to ensure that any biases, which COSMIC might 
introduce via literature curation, did not account for our observed scores.  

To parameterize our random model of pan-cancer mutations, we collected all 1,128 synonymous 
mutations present in COSMIC at the time of this study. Given our sample size, we parameterized our 
model to account for 3 types of point mutations: transversions, CpG to TpG transitions, and all other 
transitions, as these 3 processes seemed to explain observed mutation patterns best. Because some 
genes in COSMIC, like KRAS or TP53, are sequenced more often than others, we weighted both our 
estimated parameters and simulated mutations by the frequency with which each gene was sequenced; 

http://www.sanger.ac.uk/genetics/CGP/cosmic/


COSMIC notes in their manifest that they take care to record how often a gene is sequenced since it is 
critical to determining whether-or-not a gene is abnormally mutated. We chose to weight genes this 
way because the frequency that genes were sequenced was highly variable and highly skewed, 
especially towards driver genes. Hence, the frequencies of mutations fi  for all three mutational 
processes (transversions, CpG transitions, other transitions) were estimated as follows: 
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Here, Oij is the number of observed synonymous mutations belonging to mutational class i, for a 
particular gene j, Pij is the number of possible unique synonymous mutations for the class i of gene j, and 
wj is the fractional of cancer sequences reported in COSMIC that belong to gene j. This model explained 
the observed patterns of non-synonymous mutations with greater log-likelihood than two-parameter 
models, as well as more sophisticated 10-parameter models or models developed for human germ-line 
mutations (21). Using this model, random mutations were drawn with probability fiwj from the set of all 
possible genome-wide, non-synonymous mutations. These randomly-generated mutations were not 
only used as a null model for evolutionary conservation, but also as a neutral null-model to test for 
signatures of positive and negative selection in cancer genomes (Fig. S7).  
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FIGURES 

 

 



Fig. S1. Qualitative behavior of model is invariant to shape of birth and death functions. Six 

trajectories (blue shades) with rates1
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  and D(N) = N/K (A) appear qualitatively 

similar to simulations with rates with rates B(d, p) = 1 + sd d - sp p 
and D(N) = N/K.(B). They are also 

mathematically equivalent to first order expansion of (d,p). Black lines represent N which satisfies D(N) = 
B(d,p). The strong overlap of this black line with the observed population size indicates that birth and 
death are balanced throughout progression. For this reason, a model where mutations alter death rates, 
rather than birth rates, would be equivalent to our model provided that time is measured in units of 
generations. Trajectories where driver loci are assigned fitness advantage by sampling from a Gaussian 
distribution (C) or Exponential distribution (D) appear qualitatively similar to trajectories with fixed 
fitness effects. PD represents the probability density function from which drivers were drawn. For the 

Normal distribution   ( )  √
 

   
   [ 

 (    )

  
 ], while PD= Exp[-x/sd] sd

-1  for the exponential 

distribution.  All trajectories have a mean sd of 0.1. Likewise, passengers drawn from a Gamma 
distribution (E ) or Log-normal distribution (F) accumulate at a similar rate to passengers with fixed 
effects. 

                                                           
1
 This functional form of B(d,p) is exactly equivalent to



(1 sd)
d(1sp)

p
 by rescaling sp.   



 

 

Fig. S2. Passengers accumulate non-monotonically across the entire parameter space. We simulated 
tumor progression across all parameters. For each heat map, the three parameters not shown on the x 
or y axes were set to estimated values (Table S1). For each element in the heat map, 200 trajectories 
were simulated until they progressed to cancer, progress to extinction, or until 15,000 generations (~50 
years), whichever was sooner. We define progression as doubling of cancer size because, after doubling, 
populations progress quickly to cancer and acquire few additional passengers.  The mean number of 
accrued passengers is shown with color. Because variation in the mutation rate and sp alter the time to 
cancer and the probability of progression to cancer, the number of passengers depends non-
monotonically on both parameters. We plan to explore and explain our model’s rich behavior across its 
phase space in a future article. 



 

 

Fig. S3. Existence of critical population size for progression to cancer. The probability of progressing to 
cancer (black dots; 500 simulations using parameters in Table S1) exhibited a sigmoidal dependence 
upon the initial population size (K). Below this critical size, populations most often regressed from 
passenger accumulation and above this critical size they most often progressed to cancer. To the first 
approximation, overcoming this critical size is a stochastic process of barrier crossing, akin to many 
processes in chemical kinetics, where N is a reaction coordinate. In this analogy, the energy of the 

reaction is given by        
  

  
  . Hence, 



Ncrtical  is the transition state or barrier maxima of Veff. If 

the population stochastically exceeds 



Ncrtical  , then the pull of drivers becomes larger than the pull of 

passengers and the population expands rapidly. Populations smaller than 



Ncrtical  are overpowered by 

passengers, so they most often go extinct or regress. If all passengers are neutral (sp=0), the barrier is 

absent and tumors grow faster than exponentially. 



Ncrtical   depends upon the ratio of the target sizes

 



Tp Td  and selection coefficients of drivers and passengers 
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2 . A large difference in the target sizes 

for passengers and drivers 
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(see main text) and a smaller difference in selection 

coefficients
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2 103 100  renders a larger 



Ncrtical . 

 



 

 

Fig. S4. Analytical estimates of passenger accumulation. To test the accuracy of our three analytical 
approximations of passenger accumulation: Muller’s Ratchet, a traveling wave, and a neutral model 
(drift); we simulated cancer populations with estimated parameters (Table S1), except driver mutations 
were impossible. All simulations progressed to extinction via passenger accumulation, but did so with 

varying time. By assuming  ( )   (    )
  

 and that a population goes extinct once      (i.e. 

stochastic fluctuations kill very small populations), we could analytically estimate the time to extinction. 
Our analytical approximations agree with the simulations for their regimes of validity (heavy lines). For 
completeness, the predictions of the analytical results outside of their applicability regions are also 
show, but with light lines. 



 

Fig. S5. Balance between mutation and selection in the absence of drivers. The distribution of 
passengers per cell approaches a steady-state Poisson distribution with mean and variance         

provided         . A cell transitions to a fitness class with one additional passenger every time a 

mutation arises. This pushes the distribution to the left (lower fitness), while natural selection favors 
fitter haplotypes and pulls the distribution to the right. 

 



 

 

Fig. S6. Full fitness distribution of deleterious mutations in cancer. While our model focused specifically 
on deleterious mutations of intermediate effect, passenger mutations may have phenotypes with a wide 
range of magnitudes (5). Nevertheless, analysis of human variation suggests that most possible missense 
mutations in human populations are deleterious, as defined by HGMD (22). Although it may be difficult 
to distinguish between mildly and strongly deleterious mutations, only approximately 20% of gene 
knockouts in yeast, a single cell eukaryote like cancer, are lethal (23). Our estimate of Tp = 5,000,000 
attempts to accommodate these considerations. The boundaries, between what we consider effectively 
neutral, moderately deleterious, and strongly deleterious, are defined by the point at which the 
combined effects of accumulated passengers is negligible compared to the effects of a driver 
(              ) and the point at which selection against passengers prevents them from efficiently 

fixating in the population (            ). Note Tcancer represents the time to cancer. 

  



 

 

Fig. S7. Cancer mutations show evidence of positive and negative selection. A histogram of the number 
of genes, under positive selection (ω > 1) and negative selection (ω < 1). Genes classified by COSMIC as 
passengers (red) generally experienced neutral or negative selection, while genes classified by COSMIC 
as putative drivers (green) generally experienced positive selection. Because of the very small number of 
observed mutations within each gene, most genes are expected to have values of ω outside of 1 even 
under neutral evolution simply by chance (grey); nevertheless, the observed distribution has an 
inordinate number of genes with ω  < 1 as well as an inordinate number above 1. This suggests that 
there exist both passenger genes under very mild negative selection as well as driver gene under strong 
positive selection. Most of the genes used in PSIC analysis contained only 1 nonsynonymous mutation 
and could not be included in this histogram. Because some publications do not report synonymous 
mutations and because the above distribution is most likely a convolution of some genes under negative 
selection and others under positive selection, we suspect that the true extent of purifying selection in 
cancer may be greater than suggested by this analysis of the COSMIC database.  

  
         

         
 

                          

                          
 

Here O represents observed mutations in a gene (synonymous or nonsynonymous) and E represents the 
expected mutations in the gene using our 3-paramter random model of mutagenesis, if the gene were 
to experience no evolution. We generated expected histograms, by binomially sampling 



nonsynonymous and synonymous mutations from each gene using  
              

                          
 as the 

probability of a nonsynonymous mutations. The number of trials in each gene sampling was constrained 
to equal the number of observed mutations and we discarded trials with no synonymous mutations—
just as we did for observed data.   

 

 

 

 

Parameter Symbol Estimate Range Citation 

Mutation rate µ 10-8 10-10-10-7 (24) 

Driver Loci Td 700 70-7,000 (2, 6, 17) 

Passenger Loci Tp 5x106 5x105-5x107 (8, 25) 

Driver strength sd 0.1 0.001-1 (2, 26) 

Passenger strength sp 0.001 10-4-10-1 (4, 25) 

Initial Population Size K 1000* 100-10,000 (10) 

 

Table S1. Parameters of model and estimated range. Our model contains 5 independent variables that 

were estimated from the literate and explored across a range of values (µ, Td and Tp can be abstracted to 

a genome-wide driver and passenger mutation rate).  *Estimated from labeled populations in mice 

colonic crypts 2 weeks after an induced initiating APC deletion. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Phenomenon observed in our model 
Experimental 
Observation 

Clonal expansion, delayed growth, and 
extinction 

(27, 28) 

More mutations accumulate with high 
mutation rate 

(9) 

Approximately 50-300 deleterious 
mutations acquired under realistic 

parameters 
(29, 30) 

Tumors cells have a large degree of 
heterogeneity in growth rate, yet 
driver mutations fixate clonally 

(31–33) 

Mutagenic therapies often relapse 
after a period of remission 

(34) 

 

Table S2. The deleterious passenger model reproduces many properties of cancer. Many of the above 

phenomena would not be observed in our model without the inclusion of deleterious passengers. None 

of the above phenomena were pre-programmed into the model of neoplastic growth (i.e. population 

size was not fixed, nor was the number of mutations). 


