
This article was downloaded by: [171.66.209.4]
On: 21 July 2015, At: 10:38
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: 5 Howick Place, London, SW1P 1WG

Click for updates

Journal of Statistical Computation and
Simulation
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gscs20

A modified ziggurat algorithm for
generating exponentially and normally
distributed pseudorandom numbers
Christopher D. McFarlanda

a Department of Biology, Stanford University, Stanford, CA, USA
Published online: 24 Jun 2015.

To cite this article: Christopher D. McFarland (2015): A modified ziggurat algorithm for generating
exponentially and normally distributed pseudorandom numbers, Journal of Statistical Computation
and Simulation, DOI: 10.1080/00949655.2015.1060234

To link to this article: http://dx.doi.org/10.1080/00949655.2015.1060234

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2015.1060234&domain=pdf&date_stamp=2015-06-24
http://www.tandfonline.com/loi/gscs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00949655.2015.1060234
http://dx.doi.org/10.1080/00949655.2015.1060234

Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Journal of Statistical Computation and Simulation, 2015
http://dx.doi.org/10.1080/00949655.2015.1060234

A modified ziggurat algorithm for generating exponentially and
normally distributed pseudorandom numbers

Christopher D. McFarland∗

Department of Biology, Stanford University, Stanford, CA, USA

(Received 10 April 2014; accepted 5 June 2015)

The ziggurat algorithm is a very fast rejection sampling method for generating pseudorandom numbers
(PRNs) from statistical distributions. In the algorithm, rectangular sampling domains are layered on top of
each other (resembling a ziggurat) to encapsulate the desired probability density function. Random values
within these layers are sampled and then returned if they lie beneath the graph of the probability density
function. Here, we present an implementation where ziggurat layers reside completely beneath the prob-
ability density function, thereby eliminating the need for any rejection test within the ziggurat layers. In
the new algorithm, small overhanging segments of probability density remain to the right of each ziggurat
layer, which can be efficiently sampled with triangularly shaped sampling domains. Median runtimes of
the new algorithm for exponential and normal variates is reduced to 58% and 53%, respectively (collec-
tive range: 41–93%). An accessible C library, along with extensions into Python and MATLAB/Octave
are provided.

1. Introduction

Random numbers are used in a variety of applications: modelling, optimization, and cryptog-
raphy, to name a few. However, computers are designed to behave deterministically, thereby
making truly random number generation from a computer difficult. Pseudorandom numbers
(PRNs), or deterministically generated random numbers, are generally used instead of truly ran-
dom numbers. Because of their wide-range of applications, PRNs have a long history of study.
PRN generators (PRNGs) most often work by transforming an initial single random number, or
‘seed’, into a new PRN, which is then transformed into the next PRN ad infinitum. Although
PRNGs are deterministic, they nevertheless exhibit the important properties of truly random
numbers: large periodicity, equidistribution, and discontinuity.[1] Initial PRNGs generally return
uniformly distributed variates, as they are easily constructed from random bit sequences. Other
sampling distributions are then generated by transforming uniform PRNs by downstream algo-
rithms. These downstream transformations often consume more computational time than the
initial uniform PRNG, so for some stochastic algorithms, they constitute the primary bottleneck.

The ziggurat algorithm (ZA) is the most common method to obtain non-uniformly distributed
PRNs. It was first proposed in the early 1960s [2] and has since been modified many times.[3–
5] It is currently the fastest method available on modern CPUs,[3,6] although other methods of
comparable speed exist.[7] The ZA outperforms other conceptually simpler algorithms like the

*Email: cmcfarl2@stanford.edu

© 2015 Taylor & Francis

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

mailto:cmcfarl2@stanford.edu

2 C.D. McFarland

Box–Muller transformation or inverse transform sampling because these methods typically rely
on transcendental functions that are evaluated using lengthy numerical routines.[8]

The ZA is a three-step process for generating random numbers using rejection sampling:

(1) The desired probability density function f (x) (excluding its tail) is inscribed by a set of
rectangular boxes, resembling a ziggurat.

(2) A random uniformly distributed point (x, y) within a randomly chosen box (or the tail) is
sampled.

(3) If this point (x, y) resides beneath the desired probability density function, i.e. if y < f (x),
then x is returned; otherwise the point is ‘rejected’ and a new point is generated and tested.

To faithfully sample f (x), the ziggurat layers must fully inscribe f (x). Excess sampling area,
however, reduces computational speed, as more points will be rejected. Thus, layers are carefully
designed to maximize the efficiency of rejection sampling. Additionally, the algorithm can be
further accelerated by heuristically identifying values of x that can be preemptively returned
without any rejection test (described below).

Here, we present a modified ZA that creates rectangular layers that lie completely beneath the
graph of f (x), rather than completely containing f (x). This eliminates the need for any rejection
test in these layers, but also leaves short gaps of probability mass that are sampled with special
overhang layers in a small minority of iterations. By eliminating the need to rejection sample
most PRNs, and by sampling these small gaps of probability mass efficiently, PRN generation is
greatly accelerated. In the next section, the modified algorithm is described in detail alongside
the traditional ZA. We then discuss the implementation and performance of this new algorithm
relative to the best alternatives. The appendix presents code, affirms the random properties of the
generators, and discusses additional minor optimizations that improved performance.

2. Description of the algorithm

The Traditional ZA. In a ZA, the hypograph of a sampled probability distribution function f (x)
is contained by a stack of rectangular ziggurat layers. All ziggurat layers contain the exact same
area by design. Thus, evenly distributed points encapsulating f (x) can be generated each itera-
tion by selecting a random rectangular layer, using a uniform random integer i ∈ [0, imax), and
then uniformly sampling a point {x = U1Xi, y = Fi−1 + U2(Fi − Fi−1)} within the layer. Here,
U1, U2 ∈ [0, 1) denote uniformly distributed PRNs, while Xi and Fi denote the ziggurat layer’s
length and height. These length and height values are pre-calculated and stored in lookup tables,
thereby making ZA algorithms comparatively faster on systems with rapid memory access (e.g.
modern CPUs with low-latency caches, but not GPUs [7]).

ZAs accelerate computation because the vast majority of points within the ziggurat layers
can be a priori guaranteed to lie beneath f (x) [3,5] (Figure 1). For monotonically decreasing
and symmetric distributions, these preemptive acceptance regions constitute all points for which
f (x) > Fi, i.e. points to the left of the leftmost value of the probability density function. Hence,
if U1 < ki = Xi+1/Xi, then y < f (x) ∀ y ∈ [Fi−1, Fi) and x can be immediately returned without
generating y nor calculating f (x). If U1 < ki fails, however, then the algorithm must perform
the rejection test in Step 3. Shortcutting Step 3 greatly accelerates computation when f (x) is
expensive to compute, e.g. the exponential and normal distributions implemented here. Unfor-
tunately, the traditional exponentially distributed ZA still rejection tests 2.2% of all points when
the number of ziggurat layers is optimal (imax = 256).[3]

f (x) often contains a tail that cannot be inscribed by ziggurat layers. Instead, it must be sam-
pled via alternate methods: either inverse transform sampling [9] or, in most cases, ad hoc. We

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

Journal of Statistical Computation and Simulation 3

Figure 1. Ziggurat layers in the modified algorithm lie completely beneath the probability density function. In the
Traditional ZA, equal-area layers encapsulate the desired distribution f (x) (excluding the tail). Encapsulating f (x) with
rectangular layers requires extending the layers beyond f (x). For faithful sampling of the distribution defined by f (x),
uniformly distributed points {x, y} within the layer must be rejected if they reside above f (x). Points can be implicitly
accepted, avoiding this time-consuming rejection test, if they lie beneath f (x) for any value of y (x < Xi+1, light-grey
areas). 2.2% of all points are rejection-tested when 256 layers are used; dark-grey area. When i = 0, the tail is sampled via
alternate methods. In the Modified (new) ZA, layers reside completely beneath f (x). Thus, all points within the ziggurat
layers are accepted without ever considering a rejection test. However, small gaps of probability mass [1.6% of the total
probability mass when f (x) = e−x and i ∈ [0, 256)] overhang to the right of each layer. These overhangs, with area φ(j),
are sampled using an efficient rejection-sampling method.

do not improve upon these approaches here and, instead, reuse previous techniques to sample
the exponential [6] and normal [3] tails. Overall, the ZA is ideal for distributions with infrequent
sampling from the tail, i.e. not heavy-tailed distributions. For the exponential distribution with
imax = 256, ziggurat layers sample all but 0.04% of total probability mass.

The Modified (New) ZA. The modified ZA presented here differs from the traditional algorithm
in one key manner: layers lie completely beneath f (x) (Figure 1), whereas in the traditional
algorithm, layers completely contained f (x). A rejection test becomes only necessary within
small gaps of probability mass that emerge to the right of each layer. These small gaps, along
with the tail, are sampled in proportion to their area: φ(j) ∝ ∫ Xi−1

Xi
f (x)− f (Xi−1) dx, using a

simple new, rarely called procedure (described below). The new approach reduces runtime for
two reasons: (i) The comparison U1 < ki is avoided within the ziggurat layers, and (ii) a greater
fraction of points can now be preemptively accepted.

Table 1 describes execution in the new approach, relative to the old approach, in detail.
To lie completely beneath f (x), ziggurat layers must extend until their upper-right corner

coincides with f (x) (traditionally, their lower-right corner coincides with f (x)). The position of
this upper-right corner becomes {Xi, Fi = f (Xi)} in the new approach, where Xi, Fi remain the
length and height of each layer. Like the traditional ZA, the lower-left corner sits immediately
above the previous layer and begins at x = 0, i.e. {0, Fi−1}. Also like the traditional algorithm,
layers are equal in area; however, this area is slightly smaller in the new algorithm because
layers are now squeezed beneath f (x). To evenly sample f (x) using the uniform random integer
i ∈ [0, imax), each layer’s area in the new algorithm must be exactly 1/imax.

The lengths of the new ziggurat layers Xi are then defined using this volume constraint from
above:

1

imax
= Xi[f (Xi)− f (Xi−1)].

This iterative equation is solvable numerically using the Bisection or Secant Method. The first
layer begins with its lower-left corner at the origin {0, 0}, such that 1/imax = X0f (X0), and
subsequent layer lengths are continually calculated until no more layers can be created.

Fewer than imax rectangular layers will fit beneath f (x), as each layer is exactly 1/imax in area,
yet additional probability overhangs remain. Indeed, the total number of layers in the modified
algorithm Lmax cannot be determined until the last layer is calculated, which for an exponential

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

4 C.D. McFarland

Table 1. Pseudocode comparison of modified and traditional ZAs.

Traditional algorithm Modified algorithm

1: i ∼ I(0, imax) 1: i ∼ I(0, imax)

2: U1 ∼ U(0, 1) 2: if i < Lmax then return XiU(0, 1)

3: if U1 < ki then return XiU1 3: j ∼ A
4: if i == 0 then return a value from the tail 4: if j == 0 then return a value from the tail
5: x← XiU1 5: x ∼ U(Xj, Xj+1)

6: y ∼ U(Fi−1, Fi) 6: y ∼ U(Fj−1, Fj)

7: if y < f (x) then return x 7: if y < f (x) then return x
8: goto 1. 8: goto 5.

Operations executed in the common case
Traditional algorithm Modified algorithm
97.8% probability of exit at Step 3.∗ 98.4% probability of exit at Step 2.∗

1. Sample I(0, imax) 1. Sample I(0, imax)

2. Assign i 2. Assign i
3. Sample U(0, 1) 3. Compare i < Lmax
4. Assign U1 4. Sample U(0, 1)

5. Lookup ki 5. Lookup Xi
6. Compare U1 < ki 6. Multiply U(0, 1)Xi
7. Lookup Xi
8. Multiply U1Xi

∗ For imax = 256 I(a, b)→Uniform PRNG over [a, b) ∩ Z U(a, b)→Uniform PRNG over [a, b) In practice,
U(a, b) = a+ U(0, 1)(b− a) A is a discrete probability distribution with probability mass function: φ(j) =

imax
imax−Lmax

∫ Xi−1
Xi

f (x)− f (Xi−1) dx for j ∈ [0, Lmax].Fi = f (Xi)

distribution with imax = 256 (the fastest value of imax tested, see appendix) is 252. Thus, the
probability mass overhangs in the exponential case consume only 4

256 = 1.6% of all samples.
In the modified algorithm, if the rectangle chosen is less than Lmax, then x is immediately

drawn and returned – eliminating two operations in the common case: the lookup of ki and the
assignment of U(0, 1) to the temporary variable U1 (Table 1). The new algorithm also replaces
a 64-bit integer comparison with an 8-bit integer comparison that may accelerate runtime on
some architectures. Because execution in the common case dominates runtime and requires only
a few operations, these small changes nevertheless reduce runtime by 30% on average, although
speedups vary considerably (Section 4).

Like the traditional ZA, the new algorithm uses three pre-calculated tables: the lengths Xi, and
heights Fi = f (Xi) of each ziggurat layer, and (in lieu of ki) the probability mass within each
overhang conditional upon the common-case failing – specified by φ(j) (Table 1).

Sampling an overhang j, from the distribution A defined by φ(j), occurs when sampling in the
common case fails (i ≥ Lmax, Step 3). Sampling j is performed very quickly, in O(1) operations,
using the Alias method.[10]

Unlike the traditional algorithm, the probability φ(j) represents the actual quantity of prob-
ability mass beneath f (x) for overhang j (not the area of the sampling box that subsumes the
overhang). As such, for proper sampling, the overhang must be continually sampled until an
acceptable point is found (i.e. if the rejection test fails, then return to Step 5 – not Step 1). This
choice, of re-sampling from within the layer, is not essential to the new approach; however, it
does simplify φ(j).

The new algorithm also increases the likelihood that a point is selected without a rejection
test. This difference in likelihood will diminish as imax increases. Moreover, for the optimum
value of imax = 256, the likelihood of early exit increases only by 0.8% for the exponential
distribution (from 97.8% to 98.4%). Hence, this change is relatively small compared to the other
improvements.

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

Journal of Statistical Computation and Simulation 5

Sampling from the tail, Step 3, is not improved upon in the new algorithm and unique to each
probability distribution. The exponential distribution’s tail can be quickly sampled by noting that
the distribution is memoryless, i.e. the tail is, itself, an exponential distribution.[6] Hence, recur-
sive calls to the algorithm can sample the tail. The tail of the normal distribution can be quickly
sampled using a previously described transformation of exponentially distributed PRNs.[3]

Sampling of the ziggurat overhangs (Steps 4–8 in Table 1) can be further accelerated. In gen-
eral, sampling domains should closely approximate the shape of the function that they sample in
order to maximize efficiency. Because the geometric properties of the overhangs and tail vary,
these accelerations must be tailored for each particular f (x). Nonetheless, a systematic approach
is described below.

Overhangs are best sampled using right-triangular sampling domains, instead of rectangular
boxes. Since each ziggurat layer is small, changes in f ′(x) between layers will often be small and
the overhang will be nearly triangular (Figure 2). Using right-triangular sampling domains not
only increases the likelihood of a successful rejection test, but also allows for more points to be
preemptively accepted.

Figure 2 illustrates how triangular sampling from the overhangs of an exponential distribu-
tion minimizes the number of rejected points and enables preemptive acceptance of most of the
remainder. Initially rectangular boxes in these overhangs are subdivided into three regions: (i) a
triangular area exclusively above f (x); (ii) a triangular area exclusively below f (x), and (iii) a
narrow band of area, proximal to the f (x) curve that must still be sampled by rejection. This first
triangular region of points above f (x) does not need to be sampled, so any point drawn in this

Figure 2. Accelerated rejection sampling of ziggurat overhangs. Consider the overhanging probabil-
ity masses from Figure 1. Faithful sampling requires that random points within these overhanging boxes
{x = Xi + U1(Xi−1 − Xi), y = Fi−1 + U2(Fi − Fi−1)}, where U1, U2 ∼ U(0, 1), be sampled by rejection: x is
returned if y < f (x) and rejected if not. Knowledge of the shape of f (x) – that it is convex over its whole support
and has a slowly changing derivative – allow us to determine the outcome of this test without ever calculating f (x) in
many cases: sampling never succeeds when U1 > 1− U2 and can be avoided, while sampling always succeeds when
U1 > 1− U2 − εi and can be implicitly accepted. Here, εi denotes the maximum deviation of f (x) from a line segment
connecting the vertices of the sampling box. Only a small narrow band proximal to f (x), where U2 − U1 < εi, requires
a rejection test.

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

6 C.D. McFarland

region can be reflected about the hypotenuse and used to uniformly sample regions (ii) and (iii).
Points in region (ii) can then be accepted without calculating f (x) = e−x.

The curvature of f (x) dictates how triangular boxes should be sampled. Line segments begin-
ning and ending on convex functions will always lie above the function, while line segments on a
concave functions will always lie below the function (by the definition of concavity). The expo-
nential probability density function is convex over its whole support. Therefore, line segments
Yi(x) = ((Fi−1 − Fi)/(Xi−1 − Xi))(x− Xi)+ Fi, defining the hypotenuse of each triangular sam-
pling domain, lie completely above f (x). Sampling above this line segment, i.e. the upper-right
triangle, is unnecessary (Figure 2).

Overhangs in the normal distribution can be either concave or convex and must be sampled
accordingly. Convex overhangs are sampled as described for the exponential distribution. Con-
cave overhangs, near x = 0, must be sampling in both their upper-right and lower-left corners.
It is nevertheless still useful to distinguish between these two right-triangular regions because
points drawn within the lower-left corner of a concave overhang are guaranteed to lie below f (x)
and can be implicitly accepted. Thus, triangular sampling is still useful. By splitting the over-
hangs of the normal distribution into three distinctly sampled classes: concave overhangs, convex
overhangs, and an overhang containing the inflection point, the algorithm can be accelerated
somewhat; however, the additional complexity attenuates speedup (Section 4).

Additional points can be implicitly accepted and rejected in the overhangs by noting that the
derivative f ′(x) generally changes very little within each overhang. The maximal deviation εi of
f (x) from Yi(x) is

εi = max
x
|Yi(x)− f (x)|,

εi = max
x

∣
∣
∣
∣
Fi−1 − Fi

Xi−1 − Xi
(x− Xi)+ Fi − f (x)

∣
∣
∣
∣ .

For f (x) = e−x, εi = Fi−1 + (Log(Fi − Fi−1)+ Xi)(Fi − Fi−1). Points lying below the line seg-
ment Yi(x)− εi are guaranteed to lie beneath f (x) and can be implicitly accepted (Figure 2).
When imax = 256, the overhang that deviates most from f (x), εmax = maxi[εi], is only 9% of the
overhang’s height. Thus, simply using εmax as a preemptive acceptance criterion for all over-
hangs works most efficiently (it is unnecessary to create a new lookup table εi). By partitioning
the overhanging boxes into three regions, > 91% of all rejection tests are eliminated in the over-
hangs for the exponential distribution. Overall, our final implementation evaluates f (x) = e−x in
only 0.27% of samples.

This strategy, of exploiting the small curvature of f (x), can be repeated for the normal distri-
bution. Convex overhangs are, once again, treated as described in the exponential distribution,
while concave overhangs must be treated differently. For concave overhangs, the maximum devi-
ation of f (x) from Yi(x) denotes a minimal criterion for acceptance of x. Points (x, y) residing
above Yi(x)+ εi are implicitly rejected.

Sampling overhanging regions of f (x) using triangular boxes is a generic approach that should
accelerate sampling for most distributions with slowly changing derivatives. The approach adds
to the complexity of the code and replaces calculation of f (x) with other mathematical steps that
might reduce speed for some PRNGs. Worse, convex and concave boxes must be handled sepa-
rately, thereby diminishing speedup. Excessively searching for points that can avoid a rejection
test offers diminishing returns because the dissected regions become increasing smaller. The ZA
itself, a preemptive selection strategy, already accepts > 97% of all sampled points. Neverthe-
less, sampling overhangs with triangular boxes improved performance in the PRNGs developed
here. Implementation of this technique reduced median runtimes for exponential and normal vari-
ate generation by an additional 25% and 7%, respectively (detailed below). Overall, triangular

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

Journal of Statistical Computation and Simulation 7

overhang sampling eliminates ≥ 50% of f (x) function calls in the overhangs, while costing an
additional subtraction and comparison operation.

3. Implementation

This new ZA was implemented accessibly and in three programing languages. It is implemented
in C, seamlessly integrated with a modern uniform PRNG, and also embedded into Python and
MATLAB/Octave in a manner that mimics native functions (see appendix for source code and
details).

The modern uniform Mersenne Twister PRNG (mentioned above [11]) generates an array
of uniform PRNs, which consume ∼ 4 KB of cache, but accelerate uniform PRN generation
via SIMD instructions. Its code was modified slightly for seamless integration into the ziggurat
PRNGs, such that (i) bounds checking and function overhead was minimized via macros, (ii) big
endian support was deprecated (which is already incompatible with this and other ZAs [4]), and
(iii) a seed is automatically generated from the system time, Process ID, and Parent Process ID.
This uniform PRNG can be easily substituted in the provided source code.

Lookup tables were calculated to double precision without rounding errors. This was accom-
plished using a separate Python script (implemented to long double precision to avoid rounding
errors) that calculates and saves tables to a header file. This approach simplified code and
avoids pre-calculation overhead, which were already a minuscule 40 µms in the traditional algo-
rithms. The pre-calculation script uses Brent’s method to calculate Xi and the Alias method to
setup rapid sampling of A, which requires a one-time cost of O(imax · Log[imax]) operations to
construct.[10]

4. Performance

All PRNGs discussed here run in linear time and require very few (∼ 10− 100) CPU clock
cycles per PRN. Only programs that generate many PRNs (> 104) will observe noticeable dif-
ferences in runtime. All C implementations of PRNGs tested here consume very little cache
(∼ 8KB) and no RAM; the Python and MATLAB functions allocate arrays of PRNs of user-
defined size. Computation time per iteration varies for all Monte Carlo sampling techniques
(such as ZAs) because of their stochastic nature. Nevertheless, average runtimes can be measured
precisely.

The modified ZA executes faster than all other exponentially and normally distributed
PRNGs for all architectures and compilers tested here. Relative Runtimes, i.e. the timing of
the new algorithm divided by the timing of the fastest competing algorithm, were a median of
58% (Range 50–93%) for exponential variates and 53% (Range 41–63%) for normal variates
(Figure 3). These fastest competing ziggurat implementations have been cited in the literature
as the fastest exponential [3] and normal PRNGs available [4,7] and were further optimized
in our comparison (by eliminating unnecessary assignment operations, avoiding integer over-
flows, etc). Thus, our new ZAs were compared against the very best alternatives available today
(Section A.3).

The algorithm was profiled on five architectures (built circa 2013) and three compilers that
yielded highly variable speedups (Table A1). The timing of each PRNG (on various architec-
tures/compilers) denotes the time required to generate and aggregate 109 PRNs (median of five
identical trails; code provided in the appendix). The clang compiler (Version 6) exhibited a wider
range of performance times and was often slower than gcc (Table A1). In short, the modified

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

8 C.D. McFarland

Figure 3. The modified ZA executes faster than all existing algorithms. The median relative runtime (circles) and range
(black lines) of a benchmarking script that accumulates 109 PRNs was measured on seven different architecture/compiler
combinations for the exponential and normal PRNG algorithms. ‘O2’ optimizations were enabled. C Implementation
Each PRNG’s median runtime was divided by the runtime of the fastest traditional ZA (see Figure A2 for benchmarking
of various traditional ZAs). Hence, traditional algorithms have a 100% median runtime. The first improvement denotes
the time saved by moving layers beneath f (x), thereby eliminating two computational steps in the common case. This
time is inferred (see appendix) from changes in runtime when the probability of early exit is intentionally altered. The
second timing incorporates the increased probability of early exit that accompanies movement of the ziggurat layers
beneath f (x). In the final timing, the triangular overhang sampling domains are incorporated. Extensions. The new routine
executes much faster than native functions in Python and MATLAB/Octave. This is, in part, because native functions
use a different, slower uniform PRNG (see Figure A3 for uniform PRNG-independent profiling).

algorithm generates a uniform PRN, transforms this value into an exponential or normal variate,
and accumulates the variate in < 10 CPU cycles on average per iteration.

The new ZA differs from the old algorithm in three notable ways, which we profiled separately
(Figure 3). The new algorithm (i) samples points faster in the common case, (ii) more often in
the common case (Table 1), and (iii) more efficiently in the exceptional case when overhangs
are sampled. Faster sampling in the common case accounts for the greatest share of speedup, but
each improvement benefits runtime (see Table A1 for profiling details). While this first improve-
ment eliminates only two operations (a variable assignment and table lookup), it still strongly
reduces runtime because sampling now requires only six total steps. Improving overhang sam-
pling particularly accelerated exponential generation, while improving common-case sampling
particularly accelerated normal generation. This is because overhang sampling is more common
in the exponential PRNG (for both the traditional and modified algorithms).

Native Python/Matlab functions utilize different uniform PRNGs than our new implementa-
tions and the competing C algorithms, which all used.[11] This increased variance in Relative
Runtime across programming languages. Thus, subtracting the runtime spent generating uniform
variates reduced the variance in execution time across programming environments (Figure A3).

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

Journal of Statistical Computation and Simulation 9

5. Discussion

Here, we present a modified ZA that moves ziggurat layers beneath the probability density func-
tion, accelerating execution. This modification simplifies the calculation of exponentially and
normally distributed PRNs in the common case. Sampling from the remaining probability mass
overhangs using triangular sampling domains further accelerated computation. Speedups were
obtained for all architectures and compilers tested.

The modified algorithm was implemented for the two most common non-uniform distribu-
tions and in common programming languages used by the scientific computing community.
In principle, the algorithm could be extended to other variates, although these alternative dis-
tributions are often generated via transformations of exponential and normal variates (e.g.
Gamma-distributed PRNs can be efficiently generated from normal PRNs [12]). The modified
algorithm should accelerate sampling for any distribution where ziggurat layers cover the vast
majority of the distribution. This is because the modified algorithm removes computational steps
from the common case (without adding steps) and sampling from the common case dominates
runtime.

Some distributions would be difficult to fill with ziggurat layers. For example, the ZA has gen-
erally only been applied to uni-modal distributions that are either monotonically decreasing or
symmetric. Sampling from multi-modal distributions would require either additional creativity
or the creation of ziggurat layers that do not begin at x = 0. In principle, however, these distri-
butions could be creatively carved-up into rectangular and right-triangular domains that permit
rapid Monte Carlo sampling. Finally, ZAs cannot sample the tail of distributions and rely upon
alternative algorithms for these regions.

Triangular sampling domains should be useful for ziggurat overhangs of most probability
distributions, although acceleration depends upon the shape of f (x) – slowly changing derivatives
and few inflection points are ideal. A slowly changing derivative of f (x) implies that overhangs
will be nearly triangular. Overall, the strategy trades fewer calls to f (x) in exchange for a linear
transformation of uniform variates. Because the transformation is not necessarily faster than
computation of f (x), our approach will not guarantee faster executing on all architectures or
distributions. Nonetheless, all architectures/distributions profiled here were accelerated by this
technique.

ZAs are the most efficient PRNGs today [7] in large part because they exploit advan-
tages of modern architectures. ZAs use cached lookup tables and control flow operations
that execute faster today than they would on simpler architectures. Computers lacking these
strengths may benefit from alternate algorithms. ZAs in general should become more com-
petitive as greater accuracy is desired. Implementing this algorithm to greater precision does
not require augmenting the code in any way; only higher precision mathematical opera-
tions and lookup tables are required. In contrast, inverse transform sampling algorithms must
calculate a transformation function that often requires a polynomial expansion.[8] For exam-
ple, the natural log function, which inverts f (x) = e−x, is calculated using a Taylor series
expansion on IA-64 processors.[13] Higher precision calculations for this routine would
require both additional Taylor-series terms and higher precision mathematics for each term.
Hence, a ZA’s speed should be most competitive for high-precision tasks. In general, the
needs and computational resources of a program should be considered before choosing any
PRNG.

Acknowledgments

I would like to thank Anton Goloborodko, Christine Miller, Geoffrey Fudenberg, Maxim Imakaev, and Nezar Abdennur
for helpful discussions and comments.

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

10 C.D. McFarland

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

This work was supported by the National Cancer Institute under grant U54CA143874.

References

[1] L’Ecuyer P. Testing random number generators. In: Winter Simulation Conference. Piscataway, NJ: Institute of
Electrical and Electronics Engine; 1992. p. 305–313.

[2] Marsaglia G, Tsang WW. A fast, easily implemented method for sampling from decreasing or symmetric unimodal
density functions. SIAM J Sci Stat Comput. 1984;5(2):349–359.

[3] Marsaglia G, Tsang WW. The ziggurat method for generating random variables. J Stat Softw. 2000;5(8):1–7.
[4] Doornik JA. An improved ziggurat method to generate normal random samples. Oxford: University of Oxford;

2005.
[5] Zhang G, Leong PHW, Lee DU, Villasenor JD, Cheung RC, Luk W. Ziggurat-based hardware gaussian random

number generator. In: International Conference on Field Programmable Logic and Applications. Tampere: IEEE;
2005. p. 275–280.

[6] Rubin H, Johnson BC. Efficient generation of exponential and normal deviates. J Stat Comput Simul.
2006;76(6):509–518.

[7] Thomas DB, Luk W, Leong PH, Villasenor JD. Gaussian random number generators. ACM Comput Surv.
2007;39(4):11–es. Available from: http://portal.acm.org/citation.cfm?doid= 1287620.1287622.

[8] Oved I. Computing transcendental functions. 2003 [cited 2014 Mar 24]; Available from: http://math.arizona.edu/∼
aprl/teach/iriso/transcend.ps.

[9] de Schryver C, Schmidt D, Wehn N, Korn E, Marxen H, Korn R. A new hardware efficient inversion based random
number generator for non-uniform distributions. In: 2010 International Conference on Reconfigurable Computing
and FPGAs (ReConFig). Cancun, Mexico: IEEE; 2010. p. 190–195.

[10] Smith WD. How to sample from a probability distribution. 2002 Apr [cited 2014 Mar 24]; Available from: http://
scorevoting.net/WarrenSmithPages/homepage/sampling.ps.

[11] Saito M, Matsumoto M. Simd-oriented fast mersenne twister: a 128-bit pseudorandom number generator. Monte
carlo and quasi-monte carlo methods 2006. Berlin: Springer-Verlag; 2008. p. 607–622.

[12] Marsaglia G, Tsang WW. A simple method for generating gamma variables. ACM Trans Math Softw.
2000;26(3):363–372.

[13] Story S, Tak P, Tang P. New algorithms for improved transcendental functions on ia-64. IEEE Symposium on
Computer Arithmetic. 1999;4.

Appendix

A.1. Source code, installation, profiling script and usage

See https://bitbucket.org/cdmcfarland/fast_prng. The Python package fast_prng is available for automatic installation via
the Python Package Index at https://pypi.python.org/pypi/fast_prng.

A.2. Demonstration of quality

To affirm that the above implementation is mathematically correct, a statistical test ‘quality_test.c’ was created and
provided. This script allows users to sample the raw moments of generated PRNs. The raw moments of a sample are
always unbiased estimators of the raw moments of the generating distribution. Therefore, they provide a quick confir-
mation of the random properties of a distribution. Below is a sample output of the first five raw moments of 1012 trial
PRNs:

Created 1000000000000 exponential distributed pseudo-random numbers...
X1: 1.000001 (Expected 1)
X2: 2.000003 (Expected 2)
X3: 6.000015 (Expected 6)
X4: 24.000099 (Expected 24)

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

http://portal.acm.org/citation.cfm?doid{{\mathsurround =\opskip $=$}}1287620.1287622
http://math.arizona.edu/${\sim }$aprl/teach/iriso/transcend.ps
http://math.arizona.edu/${\sim }$aprl/teach/iriso/transcend.ps
http://scorevoting.net/WarrenSmithPages/homepage/sampling.ps
http://scorevoting.net/WarrenSmithPages/homepage/sampling.ps
https://bitbucket.org/cdmcfarland/fast_prng
https://pypi.python.org/pypi/fast_prng

Journal of Statistical Computation and Simulation 11

Figure A1. Distribution of 1000 Durbin–Watson Autocorrelation scores for the new PRNGs. The Durbin–Watson
score is a measure of autocorrelation, where values of 2 denote no autocorrelation. Ideal PRNGs have no autocorrelation.
Despite generating 1011 PRNs (in 103 sequences of 108 PRNs), no autocorrelation could be found.

X5: 120.000657 (Expected 120)
X6: 720.002455 (Expected 720)

Created 1000000000000 standard normal distributed pseudo-random numbers...
X1: -0.000000 (Expected 0)
X2: 1.000044 (Expected 1)
X3: 0.000003 (Expected 0)
X4: 3.000010 (Expected 3)
X5: 0.000045 (Expected 0)
X6: 15.000131 (Expected 15)

Deviation of these moments from expectation should scale as 1/
√

N = 10−6, i.e. to six significant digits. As this is
the magnitude of observed deviations, the algorithm is as precise as can be reasonably measured.

Rounding errors were avoided by calculating values for the pre-computed lookup tables: X, A, and f (X), to long
double precision. Afterwards, these values are rounded to double precision.

Lastly, because this PRNG generates numbers deterministically from a uniform PRN generator, many random proper-
ties of the generator (e.g. periodicity) will be similar to the underlying uniform PRNG. The uniform generator used here
is interchangeable and was previously demonstrated to exhibit excellent random properties.[11] Nevertheless, sequential
randomness of the new PRNGs was affirmed by measuring 1000 Durbin–Watson Score for the autocorrelation of 108

consecutive PRN sequences (Figure A1). Despite sensitivities greater than one part in a thousand, no autocorrelation was
detectable.

A.3. Additional modifications to the old PRNG algorithms that mildly increased
performance

To ensure that the new algorithms were benchmarked against the best alternatives available, we found several slight
modifications that accelerated traditional algorithms. For the fastest normal PRNG in the literature, these modifications
were described previously.[4] The fastest alternative exponential PRNG was optimized iteratively, identifying three
additional improvements that collectively reduced runtime by an average of 16% (Figure A2).

The benefit of these steps were profiled (Table A1) and compared to the original traditional algorithm. While each
change improved performance on average, some exceptions exist. Two iterations of the traditional normal algorithm
[4] were also created: a slower ZIGNOR version, and a heavily optimized VIZIGNOR version (presented in [4]). This
optimized version was used for benchmarking and is provided with the source code. VIZIGNOR contains three opti-
mizations: (a) imax = 256, (b) double-precision uniform PRNs (52-bit mantissa) were generated with only 32-bits of
randomness, which (c) was accomplished using a I(0, 232) PRNG (rather than the U(0, 1) PRNG), that was multiplied
by Xi and ki values rescaled accordingly, i.e. Xi, ki → 2−32Xi, 2−32ki. This last technique was first described in [3].

A.4. Additional modifications to the algorithm that mildly increased performance

(1) Replacing the floating-point uniform PRNG for U(0, 1) with a faster uniformly distributed 64-bit integer (either
I(0, 263) for the exponential PRNG, or I(−263, 263) for the normal PRNG. This strategy, of using integers rather than
floating-point numbers, has been used previously.[6] As in Figure A2, signed integer PRNs on the domain [0, 263)

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

12 C.D. McFarland

Figure A2. Improvements to traditional PRNGs for benchmarking. We identified five effective ways to accelerate the
traditional exponential ZA [3]: (i) An unnecessary x← U1Xi assignment was eliminated, (ii) Floating-point math was
executed at double-precision, (iii) ki and Xi were paired into a single structure array to maximized memory prefetching,
(iv) The tail of the exponential distribution was sampled by calling the exponential PRNG recursively,[6] (v) Integer
overflows checks were avoided by using the signed I(0, 263) uniform integer PRNG. This signed PRNG was created by
assigning the sign-bit of 64-bit inter representations to 0 (rather than calculating an absolute value). Although this inverts
a negative integer’s magnitude (in Two’s Complement representations), the resulting distribution remains uniformly
distributed.

Figure A3. Uniform PRNG-Independent benchmarking of Python/Matlab extensions. We investigated the speedup
that was attributable to the various ziggurat algorithms, independent of the underlying Uniform PRNG that fed each
algorithm. This was accomplished by measuring the execution time required to generate and accumulate 109 Uniform
PRNs (Table A1) and subtracting these times from the time required to generate and accumulate 109 exponentially or
normally distributed PRNs. Variability in execution time between the various programming languages was reduced
after this correction, as differences in the underlying uniform PRNGs exaggerated runtime differences in the ziggurat
algorithms.

execute faster than unsigned integer PRNs because overflow checks are avoided. To keep output unaltered, Xi and
Fi are rescaled accordingly.

(2) Sampling I(0, 256) from the last 8 bits of the PRN returned by I(0, 263). This technique was also employed pre-
viously [3,4] and does not alter the output because the last 12 bits of I(0, 263) are squashed during floating-point
multiplication.

(3) For normally distributed PRNs, Steps 4–8 (overhang sampling) were executed via a do-while loop.
(4) For exponentially distributed PRNs, Steps 4–8 were executed via a tail-recursive function.

Note that these modifications often swap floating point operations for integer operations and exploit compiler ten-
dencies, so they may not increase performance for all architectures/compilers. These optimizations were all made before
profiling and quality demonstrations.

A.5. Modifications to the code that did not increase performance

(1) Increasing imax to 512 increased computational speed by only 4%, and was deemed unworthy of the greater cache
consumption. Using an imax that is not a power of two drastically slows computation because i cannot be sampled
directly from a random bit sequence.

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

Journal of Statistical Computation and Simulation 13

Table A1. New and traditional ZA runtimes vary across architectures, compilers, and programming language.

Architecturea i5-4258U i7-3770K i5-4258U E5620 E5620 i5-M540 i5-3470
Clock Speed (GHz) 2.40 3.50 2.40 2.40 2.40 2.53 3.20
Operating System darwin linux darwin darwin darwin windows linux
Compilerb clang 6 gcc 4.8 gcc 4.9 gcc 4.9 clang 6 MinGW gcc 4.8

New exponential ZA
All optimizations 7.06 2.79 4.32 4.46 8.84 6.29 3.03
Traditional overhangs 7.1 3.9 5.36 6.12 9.28 8.06 4.25
To infer early exit 7.46 3.11 4.77 5.0 9.28 7.16 3.39

New normal ZA
All optimizations 3.98 3.29 5.05 5.54 5.47 5.23 3.58
Traditional overhangs 4.25 3.59 5.09 5.76 5.04 5.57 3.91
To infer early exit 4.5 3.64 5.54 6.08 6.08 5.34 3.96

Traditional exponential ZA [3]
Initial algorithm 9.27 6.27 9.24 10.43 10.97 11.11 6.84
No x assignment 9.33 6.27 8.73 10.23 10.98 11.34 6.8
Double precision 8.71 5.31 7.9 8.86 9.44 9.02 5.74
Paired Xi, ki lookup 8.74 5.3 8.41 9.45 9.7 8.92 5.74
Recursive tail 8.34 5.33 7.92 9.05 9.69 9.27 5.64
No integer overflows 8.15 5.26 7.44 8.91 9.49 9.22 5.71

Traditional normal ZA [4]
ZIGNOR 11.3 7.55 11.26 13.34 13.53 17.14 8.23
VIZIGNOR (Accelerated) 8.61 6.26 8.0 8.92 9.74 12.84 6.82

For uniform-PRNG independent estimates
Uniform and accumulate 2.53 2.12 2.49 3.15 3.13 2.96 2.31

New Python functions
Exponential 18.8 3.45 18.76 13.21 13.42 – 4.29
Normal 17.27 4.92 18.08 12.62 12.6 – 5.71
Uniform 15.61 2.75 16.72 8.18 8.37 – 3.2

Native Python (Numpy) functions
Exponential 38.74 45.82 41.05 45.25 45.38 – 49.99
Normal 52.04 39.54 51.53 60.44 60.34 – 43.26
Uniform 24.77 10.56 25.14 24.37 24.23 – 11.57

New MATLAB/Octave functions
Exponential 9.79 3.93 9.82 – – – 4.18
Normal 7.3 5.39 7.31 – – – 5.6
Uniform 5.64 3.23 5.66 – – – 3.56

Native MATLAB R2013B functions
Exponential 23.93 12.4 24.07 – – – 12.64
Normal 20.76 13.29 20.87 – – – 14.48
Uniform 14.04 7.56 14.02 – – – 8.24

a All architectures are Intel ® CoreTM or Xeon ® products with ≥ 4 MB cache.
bCompiled with ‘O2’ optimizations enabled.

(2) Calculating a table of εi for every overhang (Figure 2). Instead, a single, maximal possible deviation εmax = maxi[εi]
(and minimum deviation εmin = mini[εi] for concave overhangs) was used. This avoids caching a fourth lookup
table.

(3) Usage of most SIMD/ternary intrinsics, e.g. ‘fma’ found in ‘math.h’ in the C Standard Library. Modern compilers
tend to leverage these instructions effectively without additional direction.

(4) Generating single-precision PRNs.

A.6. Details of profiling

Two profiling scripts provided in the source code along with accompanying output, titled ‘profile_all.py’ and ‘profile.c’,
timed all routines. In every case, 109 PRNs were generated in five trials and the median trial runtime was saved to a
comprehensive table (Table A1). This table was used to construct Figure 3 as described in the figure legend.

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

14 C.D. McFarland

To infer the mean execution time t̄Accelerated Common Case∗ of a modified ZA that moves layers beneath f (x) without
increasing the probability of early exit (presented in Figure 3), we assumed:

t̄ = Pearly−exittearly−exit + (1− Pearly−exit)toverhang,

where t̄ is the average execution time, Pearly−exit is the probability that the algorithm exits at Step 2, and
tearly−exit, toverhang are the unknown execution times of early-exit and overhang PRN generation. The hybrid timing

t̄Accelerated Common Case∗ = P(traditional)
early−exit t(modified)

early−exit + (1− P(modified)

early−exit)t
(modified)

overhang , where the traditional and modified super-
scripts denote values specific to the traditional and modified ZAs, was inferred. While all probabilities of early exit
are known a priori, the two execution times (early-exit and overhang) must be inferred from observed profiling times.
These two variables are under-determined when just one measurement of the overall execution time t̄ is made, so an
artificial modified algorithm, where Poverhang → 2Poverhang and Poverhang = 1− Pearly−exit, was profiled as well. These
two measurements then allow us to solve for both tearly−exit and toverhang, and thus t̄Accelerated Common Case∗ , using a system
of linear equations.

Python and Matlab extensions generally executed faster than the fastest C implementations. This is primarily because
a particular emphasis was placed on finding the best C alternative, while the scripting language extensions were simply
compared against native functionality – all prior ziggurat algorithms considered here were designed in C. However,
the native Python and Matlab extensions also utilized different uniform PRNGs than our algorithms, which affected
profiling. Thus, we calculated uniform-independent PRNG execution times for the new algorithm and native functions.

D
ow

nl
oa

de
d

by
 [

17
1.

66
.2

09
.4

]
at

 1
0:

38
 2

1
Ju

ly
 2

01
5

	1. Introduction
	2. Description of the algorithm
	3. Implementation
	4. Performance
	5. Discussion
	Acknowledgments
	Disclosure statement
	Funding
	References
	Appendix
	A.1. Source code, installation, profiling script and usage
	A.2. Demonstration of quality
	A.3. Additional modifications to the old PRNG algorithms that mildly increased performance
	A.4. Additional modifications to the algorithm that mildly increased performance
	A.5. Modifications to the code that did not increase performance
	A.6. Details of profiling

