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Cancer growth is a multistage, stochastic evolutionary process. 
While cancer genome sequencing has been instrumental in 
identifying the genomic alterations that occur in human 
tumors, the consequences of these alterations on tumor 
growth remain largely unexplored. Conventional genetically 
engineered mouse models enable the study of tumor growth 
in vivo, but they are neither readily scalable nor sufficiently 
quantitative to unravel the magnitude and mode of action of 
many tumor-suppressor genes. Here, we present a method that 
integrates tumor barcoding with ultradeep barcode sequencing 
(Tuba-seq) to interrogate tumor-suppressor function in 
mouse models of human cancer. Tuba-seq uncovers genotype-
dependent distributions of tumor sizes. By combining Tuba-
seq with multiplexed CRISPR–Cas9-mediated genome editing, 
we quantified the effects of 11 tumor-suppressor pathways 
that are frequently altered in human lung adenocarcinoma. 
Tuba-seq enables the broad quantification of the function 
of tumor-suppressor genes with unprecedented resolution, 
parallelization, and precision.

Genome sequencing has catalogued somatic genomic alterations 
in human cancers and identified many putative tumor-suppressor 
genes1–3. However, the identification of recurrent genomic altera-
tions does not necessarily reveal their functional importance to 
cancer growth; the impact of specific alterations remains difficult 
to glean from cancer genome sequencing data alone4,5.

The impacts of tumor-suppressor gene losses on neoplastic 
growth have been investigated using knockdown, knockout, and 
overexpression studies in cell lines as well as in mouse models. 
However, the near-optimal growth of cancer cell lines in culture, 
their widespread genetic and epigenetic changes, and the lack of 
an autochthonous microenvironment limit the ability of stud-
ies on cell lines to provide insight into how tumor-suppressor  
genes constrain the expansion of tumors in vivo. In contrast, 
genetically engineered mouse models enable the introduction 
of defined genetic alterations into normal adult cells, which 
results in the initiation and growth of tumors within their natural  
in vivo setting6. While these models have become a mainstay for 
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the analysis of tumor-suppressor gene function, they are neither 
readily scalable nor sufficiently quantitative.

Recently, CRISPR–Cas9-mediated genome editing in somatic cells 
has increased the throughput of in vivo analyses of gene function in 
autochthonous cancer models7–10. While these systems increase the 
scale of in vivo functional analyses, they continue to rely on relatively 
crude measurements of tumor growth, which limits their application 
to the analysis of tumor suppressors with the most dramatic effects.

Molecular barcoding enables precise, multiplexed quantifica-
tion of evolutionary fitness, selection, and clonal growth11–17. We 
now combine tumor barcoding and high-throughput sequenc-
ing (Tuba-seq) with genetically engineered mouse models to 
quantify tumor growth with unprecedented resolution. Precise 
quantification of individual tumor sizes uncovered the impact 
of inactivating different tumor-suppressor genes. Integration of 
these methods with multiplexed CRISPR–Cas9-mediated genome 
editing enabled the parallel inactivation and functional quantifi-
cation of a panel of putative tumor-suppressor genes.

RESULTS
Tuba-seq enables precise and parallel quantification of 
tumor sizes
Oncogenic KRAS is a key driver of human lung adenocarcinoma, 
and early stage lung tumors can be modeled using LoxP-Stop-LoxP 
KrasG12D knock-in mice (KrasLSL-G12D/+), in which expression 
of Cre in lung epithelial cells leads to the expression of onco-
genic KrasG12D (refs. 18 and 19). LKB1 and P53 are frequently 
mutated tumor-suppressor genes in human lung adenocarcino-
mas (Supplementary Fig. 1a)20, and Lkb1 or p53 deficiency each 
increase tumor burden in mouse models of oncogenic KrasG12D-
driven lung tumors21,22. In viral-Cre-induced mouse models  
of lung cancer, large numbers of tumors can be initiated simulta-
neously, and individual tumors can be stably tagged by lentiviral-
mediated DNA barcoding23,24. Therefore, we set out to determine 
whether high-throughput sequencing of the lentiviral barcode region  
from bulk-tumor-bearing lungs could quantify the number 
of neoplastic cells within each uniquely barcoded tumor 
(Supplementary Fig. 1b).
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To interrogate the growth of oncogenic KrasG12D-driven lung 
tumors as well as the impact of Lkb1 and p53 deficiency on tumor 
growth, we initiated lung tumors in KrasLSL-G12D/+;Rosa26LSL-Tomato  
(KT), KT;Lkb1flox/flox (KLT), and KT;p53flox/flox (KPT) mice with 
a library of lentiviral-Cre vectors containing ~106 unique bar-
codes (Lenti-mBC/Cre; Fig. 1a and Supplementary Fig. 1b). KT  
mice developed widespread hyperplasias and small-tumor masses 
(Fig. 1b and Supplementary Fig. 1c). Interestingly, while KLT 
mice had large tumors of relatively uniform size, KPT mice had a 
very diverse range of tumor sizes (Fig. 1b).

To quantify the neoplastic cell number in every lesion using 
high-throughput sequencing, we PCR amplified the integrated 
lentiviral barcode region from bulk tumor-bearing lung DNA 
from each mouse and sequenced this to an average depth of 
>107 reads per mouse (Fig. 1a and Supplementary Note). Our 
analysis indicated that tumor sizes varied by more than 1,000-
fold (Fig. 1c). Barcode reads from small lesions could represent 
unique tumors or be generated from recurrent sequencing errors 
of similar barcodes from larger tumors. To minimize the occur-
rence of these spurious tumors, we aggregated reads expected 
to be derived from the same tumor barcode using an algorithm 
that generates a statistical model of sequencing errors (DADA2; 
Fig. 2 and Supplementary Fig. 2)25. To enable the conversion 
of read count to cancer cell number, we added cells with known 

barcodes to each lung sample at a defined number before tissue 
homogenization and DNA extraction, and we normalized tumor 
read counts to ‘benchmark’ read counts from these cells (Fig. 1a 
and Supplementary Fig. 3).

The Tuba-seq pipeline was highly reproducible between 
technical replicates and was insensitive to typical variation in 
many technical variables (Fig. 2b–d, Supplementary Fig. 4, and 
Supplementary Note). Tumor size distributions were also highly 
reproducible between mice of the same genotype (R2 > 0.98;  
Fig. 2e, Supplementary Fig. 4g, and Supplementary Note). 
Indeed, unsupervised hierarchical clustering of size distribu-
tions separated mice according to their genotype, even when 
tumors were induced with different Lenti-mBC/Cre titers 
(Supplementary Fig. 4d). Differences in the spectrum of tumor 
sizes between mice of the same genotype were far greater than 
the differences between two fractions of tumors within the 
same mouse, indicating that the measurement error of Tuba-
seq is less than the intrinsic variability between mice (Fig. 2e,f). 
Thus, Tuba-seq rapidly and precisely quantifies the number of 
neoplastic cells within thousands of individual lung lesions in 
KT, KLT, and KPT mice (Fig. 1c, Supplementary Fig. 4c, and 
Supplementary Note).

Analysis of tumor sizes uncovers two modes of tumor suppression
To assess the effect of p53 or Lkb1 deficiency on tumor growth, 
we calculated the number of neoplastic cells in the tumors at  
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Figure 1 | Tuba-seq combines tumor barcoding with high-throughput 
sequencing to allow parallel quantification of tumor sizes. (a) Schematic 
of Tuba-seq pipeline to assess lung tumor size distributions. Tumors 
were initiated in KrasLSL-G12D/+;Rosa26LSL-Tomato (KT), KT;Lkb1flox/flox (KLT), 
and KT;p53flox/flox (KPT) mice with Lenti-mBC/Cre (a pool of lentiviral 
vectors containing ~106 random 15-nt DNA barcodes (BC)). Tumor sizes 
were calculated via bulk barcode sequencing of tumor-bearing lungs. 
(b) Fluorescence dissecting scope images of lung lobes from KT, KLT, 
and KPT mice with Lenti-mBC/Cre− initiated tumors. Lung lobes are 
outlined with white dashed lines. The titer of Lenti-mBC/Cre is indicated. 
Scale bars in upper panels, 5 mm. Scale bars in lower panels, 1 mm. 
(c) Tumor size distributions in KT, KLT, and KPT mice (number of mice 
per group is indicated). Each dot represents a tumor. The area of each 
dot is proportional to the number of cancer cells in each tumor. A dot 
corresponding to the approximate number of cancer cells in a 1 mm-
diameter spherical tumor is shown to the right of the data for reference.
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Figure 2 | Tuba-seq precisely and reproducibly quantifies tumor sizes.  
(a) DADA2 eliminates recurrent read errors that can appear as spurious 
tumors. Cell lines with known barcodes were added to each lung sample  
(5 × 105 cells each). Recurrent read errors derived from these known barcodes 
generate spurious tumors, which are greatly reduced by DADA2. (b) Individual 
tumor sizes and (c) size profiles of tumors at the indicated percentiles of 
technical replicate sequencing libraries prepared from an individual bulk 
tumor-bearing lung sample. (d) Analysis of the effect of variation in read 
depth, GC content of the DNA barcodes, and diversity of the barcode library 
on tumor size calling. Tumors were partitioned into thirds corresponding 
to high, moderate, and low levels of each technical parameter. Whiskers 
capped at 1.5 IQR. Boxes depict interquartile range (IQR) with center line at 
median. (e) Size distributions across five KLT mice. Sizes of the tumors at the 
indicated percentiles in individual mice are connected by a line. (f) Tumors 
in each KLT mouse were partitioned into two groups (see Online Methods), 
and the profiles of these groups were compared. Sizes of the tumors at the 
indicated percentiles in an individual mouse are connected by a line.
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different percentiles within the distribution. While tumors in KLT 
mice were consistently larger than KT tumors, deletion of p53 
allowed only a small fraction of tumors to grow to exceptional 
sizes (Figs. 1c and 3).

To further investigate the effect of p53 and Lkb1 deficiency 
on tumor growth, we also defined the mathematical distribu-
tions that best fit the tumor size distributions in KT, KLT, and 
KPT mice. Lkb1-deficient tumors were log-normally distributed 
across the full range of the distribution, consistent with exponen-
tial tumor growth with normally distributed rates (Fig. 3d)26. To 
estimate average tumor size without allowing very large tumors 
to greatly shift this metric, we calculated the maximum likeli-
hood estimator of the mean number of cancer cells given a log-
normal distribution of tumor sizes (LN mean). By this measure 
KLT tumors had, on average, seven-fold more cancer cells than 
KT tumors (Fig. 3a,c). Despite greater tumor burden and visibly 
larger tumors in KPT mice, p53 deficiency did not increase the 
LN mean. Instead, p53-deficient tumors were power-law distrib-
uted at large sizes, and the elevated tumor burden was driven by 
rare, exceptionally large tumors (Fig. 3d and Supplementary 
Note)27. A power-law distribution is consistent with p53 defi-
ciency allowing tumors to acquire additional rare, yet profoundly 
tumorigenic, alterations28–30.

Multiplexed CRISPR–Cas9-mediated inactivation of tumor-
suppressor genes
To simultaneously quantify the tumor-suppressive function of 
many known and candidate tumor suppressor genes in parallel, we 
combined Tuba-seq and conventional Cre-based mouse models 
with multiplexed CRISPR–Cas9-mediated in vivo genome editing 
(Fig. 4a–c). Assessing different tumor genotypes within individ-
ual mice minimized the effect of mouse-to-mouse variability and 
maximized the resolution of Tuba-seq (Supplementary Note).

Initiation of tumors with lentiviral sgRNA/Cre vectors targeting 
either the tdTomato reporter or Lkb1 in mice with an H11LSL-Cas9  
allele8 confirmed efficient Cas9-mediated gene inactivation 
(Supplementary Fig. 5). Next, we selected 11 known and putative 
lung adenocarcinoma tumor-suppressor genes representing diverse 
pathways and identified the most efficient sgRNA targeting each gene 
(Fig. 4b, Supplementary Fig. 1a, and Supplementary Fig. 6)20,31.  
To quantify the number of neoplastic cells in each tumor using 
Tuba-seq, we diversified each Lenti-sgRNA/Cre vector with a two-
component barcode consisting of a unique 8-nt ‘sgID’ specific to 
each sgRNA and a random 15-nt barcode (BC) to uniquely tag each 
tumor (sgID-BC; Fig. 4a,b and Supplementary Fig. 7).

Parallel quantification of tumor-suppressor function in vivo
To quantify the effect of inactivating each gene on lung tumor 
growth in parallel, we initiated tumors in KT and KT;H11LSL-Cas9 
(KT;Cas9) mice with a pool of the 11 barcoded Lenti-sgRNA/Cre 
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vectors and 4 barcoded Lenti-sgInert/Cre vectors (Lenti-sgTS-
Pool/Cre; Fig. 4b,c). 12 weeks after tumor initiation, the number 
and size of macroscopic tumors was greater in KT;Cas9 mice, 
even though they received a lower dose of virus than the KT mice 
(Fig. 4d and Supplementary Fig. 8). To determine the number 
of neoplastic cells in each tumor with each sgRNA, we amplified 
the sgID-BC region from bulk tumor-bearing lung DNA, deep 
sequenced the product, and applied our Tuba-seq analysis pipe-
line. For each sgRNA, the number of neoplastic cells in tumors at  
different percentiles was normalized to tumors from the sgInert  
distribution (Fig. 5a). We also determined the relative LN mean size 
of tumors containing each of the 11 tumor-suppressor-targeting  
sgRNAs (Fig. 5b).

We analyzed an additional cohort of KT;Cas9 mice 15 weeks 
after tumor initiation with Lenti-sgTS-Pool/Cre. We confirmed 
the tumor-suppressive effect of all tumor suppressors identified  
at 12 weeks post-tumor initiation (Fig. 5c and Supplementary  

Fig. 8d,e). Importantly, both the LN mean and the relative number 
of cancer cells in the 95th-percentile tumor were reproducible 
(Fig. 5c and Supplementary Fig. 8).

These analyses confirmed the known tumor-suppressive 
function of Lkb1, Rb1, Cdkn2a, and Apc in KrasG12D-driven 
lung tumor growth (Fig. 5a,b and Supplementary Figs. 6b and 
8)7,22,32,33. Tuba-seq also identified the splicing factor Rbm10 and 
the methyltransferase Setd2 as suppressors of lung tumor growth. 
Splicing factors have emerged as potential tumor suppressors 
in many cancer types, and components of the spliceosome are 
mutated in 10–15% of human lung adenocarcinomas2,20,31,34. 
Rbm10 inactivation significantly increased the number of cancer 
cells in the top 50% of lung tumors and increased the LN mean 
size (Fig. 5a,b). Setd2 is the sole histone H3K36me3 methyl-
transferase and may also affect genomic stability by methylating 
microtubules35–37. SETD2 is frequently mutated in several major 
cancer types, including lung adenocarcinoma2,20,31,33,38. Setd2 
inactivation dramatically increased tumor size, and these tumors 
exhibited a log-normal size distribution (Supplementary Fig. 9).  
These data suggest that aberrant pre-mRNA splicing and the 
absence of Setd2-mediated lysine methylation both have pro-
found protumorigenic effects in lung adenocarcinoma.

To further validate the tumor-suppressive effect of Setd2, we 
induced tumors in KT and KT;Cas9 mice with lentiviral vectors 
containing an inert sgRNA (sgNeo2) or either of two sgRNAs 
targeting Setd2. KT;Cas9 mice with tumors initiated with either 
Lenti-sgSetd2/Cre vector developed large adenomas and adenocar-
cinoma and exhibited greater overall tumor burden than did KT 
mice with tumors initiated with the same virus (Supplementary 
Fig. 10). Analysis of tumor sizes by Tuba-seq confirmed a nearly 
four-fold increase in the number of neoplastic cells in the largest 
Setd2-deficient tumors relative to control tumors (Fig. 5d and 
Supplementary Fig. 10). Importantly, the validation of Setd2-
mediated tumor suppression by conventional methods required 
more mice than our initial screen of 11 putative tumor suppres-
sors did; this emphasizes the benefit of multiplexing sgRNAs to 
increase throughput and decrease costs.

Recapitulation of tumor size distributions within the 
tumor-suppressor pool
Consistent with the distribution of tumor sizes in KPT mice,  
neither the LN mean nor the analysis of tumors up to the 95th per-
centile uncovered an effect of targeting p53 on tumor growth in 
KT;Cas9 mice with Lenti-sgTS-Pool/Cre-initiated tumors (Fig. 5).  
As anticipated, Lenti-sgp53/Cre-initiated tumors exhibited a 
power-law distribution at larger sizes, and sgp53 was enriched 
within the largest tumors in these mice (Supplementary  
Fig. 11a,b). The effect of targeting p53 was greater at the later 
15-week time point, consistent with p53’s known role in limiting 
tumor progression (Supplementary Fig. 11)21,29.

In KT;Cas9 mice with Lenti-sgTSPool/Cre-initiated tumors, 
Lenti-sgLkb1/Cre-initiated tumors exhibited a log-normal dis-
tribution of tumor sizes consistent with our data from KLT mice 
(Figs. 1c and 2d; Supplementary Fig. 9a). Both p53- and Lkb1-
deficient tumors generated through somatic genome editing 
have similar size distributions to those of tumors initiated using 
floxed alleles. Thus, even in this pooled setting, quantification of 
individual tumor sizes can uncover characteristic distributions  
of tumor sizes upon tumor suppressor inactivation.
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Figure 5 | Tuba-seq uncovers known and novel tumor suppressors with 
unprecedented resolution. (a) Analysis of the relative tumor sizes in 
KT;Cas9 mice 12 weeks after tumor initiation with Lenti-sgTS-Pool/Cre. 
Relative size of tumors at the indicated percentiles represents merged 
data from eight mice, normalized to the average size of sgInert tumors. 
95% confidence intervals are shown. Percentiles that are significantly 
greater than sgInert are in color. Colors correspond to the sgRNA color 
in Figure 4b, and the darker the shade of color the larger the percentile, 
as shown in the legend in gray scale. (b) Estimates of mean tumor 
size (relative to inert) assuming a log-normal tumor size distribution. 
Bonferroni-corrected, bootstrapped P values are shown. P values < 0.05 
and their corresponding means are shown in bold. (c) Relative size  
of the 95th-percentile tumors (left), log-normal (LN) mean (middle), and 
log-normal (LN) P value (right) for tumors with each sgRNA in KT and 
KT;Cas9 mice 12 weeks after tumor initiation, and KT;Cas9 mice 15 weeks 
after tumor initiation. Numbers in parentheses denote the number of 
weeks after tumor initiation that the mice were analyzed. (d) Tumor size 
at the indicated percentile from KT;Cas9 mice with Lenti-sgSetd2#1/Cre-
initiated tumors versus Lenti-sgNeo2/Cre-initiated tumors (N = 4 mice  
per group). Percentiles were calculated using all tumors from all mice in 
each group. (e,f) The relative size of the 95th-percentile tumor and the  
log-normal statistical significance determined by Tuba-seq were plotted 
against the average fold change in sgID representation and their  
associated P values, respectively. Error bars in e are 95% confidence 
intervals. Dotted lines in f indicate the 0.05 significance threshold.  
Dot color corresponds to the sgRNA color in Figure 4b.
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Tuba-seq provides the sensitivity to identify tumor 
suppressors of small effect
Two-thirds of the tumor suppressors we identified (Apc, Rb1, 
Rbm10, and Cdkn2a) were only identified when we considered 
the number of neoplastic cells in each barcoded tumor, while they 
were not identified when we only considered the fold change in 
sgID representation (Fig. 5). In fact, the precision of effect-size 
estimates, statistical significance, and the detection of tumor sup-
pressors with small effect were all improved using the Tuba-seq 
pipeline (Fig. 5e,f and Supplementary Note).

As an orthogonal approach to investigate the selection for tumor-
suppressor inactivation and to confirm on-target sgRNA-mediated  
genome editing, we PCR amplified and deep sequenced each 
sgRNA-targeted region from bulk tumor-bearing lung DNA region 
from KT;Cas9 mice with Lenti-TS-Pool/Cre-initiated tumors.  
A relatively high fraction of Setd2, Lkb1, and Rb1 alleles had inac-
tivating indels at the targeted sites, which was consistent with 
on-target sgRNA activity and the expansion of tumors with inac-
tivation of these genes (Supplementary Figs. 11c–f and 12). This 
analysis also confirmed that all targeted genes contained indels 
(Supplementary Fig. 12). Although all of the genes included in 
our pool are recurrently mutated in human lung adenocarcinoma 
(Supplementary Fig. 1a)20,31, Arid1a, Smad4, Keap1, and Atm 
were not identified as tumor suppressors (Fig. 5; Supplementary 
Figs. 8d,e,h and 12a). That Atm deficiency does not increase tumor 
growth is consistent with results using an Atmfloxed allele39. We 
also confirmed the lack of tumor-suppressive function of Smad4  
in vivo (Supplementary Fig. 12d,e). For these genes, changes in 
gene expression or environmental state, additional time, or coinci-
dent genomic alterations may be required for inactivation of these 
pathways to confer a growth advantage in lung cancer cells.

DISCUSSION
While many putative tumor suppressors have been identified from 
cancer genome sequencing, limited strategies exist to test their 
function in vivo in a rapid, systematic, and quantitative manner 
(Supplementary Table 1). Tuba-seq enables exceptionally precise 
and detailed quantification of tumor growth in vivo. Interestingly, 
tumors initiated at the same time within the same mouse with the 
same genomic alterations grew to vastly different sizes after only 
12 weeks of growth (Figs. 1 and 2). Thus, additional spontane-
ous alterations, differences in the state of the initial transformed 
cell, and/or the local microenvironment may impact how rap-
idly a tumor grows and whether it has the capacity for continued 
expansion. The growth variability identified by Tuba-seq also 
revealed properties of gene function. p53 deficiency generates a 
tumor size distribution that is power-law distributed for the largest 
tumors, consistent with a Markov process where very large tumors 
are generated by additional, rarely acquired driver mutations 
(Supplementary Note)27. Conversely, Lkb1 inactivation increases 
the size of a majority of lesions, consistent with the role of Lkb1 in 
restraining proliferation40. Interestingly, Setd2 has recently been 
suggested to methylate tubulin; and Setd2 deficiency can lead to 
genomic instability, which would be expected to generate power-
law-distributed tumor growth34. However, the size distribution of 
Setd2-deficient lung tumors was strictly log normal, which sug-
gests that the main impact of Setd2 loss on the early stages of 
tumor growth is the induction of gene-expression programs that 
generally dysregulate growth (Supplementary Fig. 9b,c).

Unlike conventional floxed alleles, CRISPR–Cas9-mediated 
genome editing in the lung only generates homozygous null alle-
les in approximately half of all tumors (Supplementary Fig. 5d). 
Thus, while the lack of uniform homozygous deletion of targeted 
genes would reduce the tumor-suppressive signal from bulk meas-
urements, Tuba-seq effectively overcomes this technological limi-
tation by barcoding and analyzing each tumor (Fig. 5).

By analyzing a large number of tumor suppressors, our data sug-
gest that early neoplastic cells reside in an evolutionarily nascent 
state where many tumor-suppressor alterations are adaptive and 
confer a large growth advantage. In contrast, tumor-suppressor  
alterations in cancer cell lines often provide little advantage 
and can even be detrimental41. This is consistent with cancer 
cell lines residing in a much more mature evolutionary state, 
approaching optimal growth fitness on account of their origin 
from advanced-stage disease as well as the selection for prolif-
erative ability in culture. Furthermore, the intimate link between  
tumor suppression and many aspects of the in vivo environment 
underscores the importance of analyzing the effects of tumor-
suppressor loss in tumors in vivo42–44.

Notably, the frequency of tumor-suppressor alterations in human 
cancer does not directly correspond to the magnitude of their tumor-
suppressor function. While variation in the mutation rates, inclusive 
fitness, and genetic context likely contribute to the frequency of 
mutations in human cancer, our findings highlight the need for 
rapid and quantitative methods to determine the functional impor-
tance of lower frequency putative tumor suppressors, the mutation 
of which may be profoundly important for individual patients.

Tuba-seq will likely contribute to our understanding of cancer 
pathogenesis in many other ways. It should permit the investiga-
tion of more complex combinations of tumor-suppressor gene 
loss and facilitate analysis of other aspects of tumor progression. 
Tuba-seq should be adaptable for studies of other cancer types 
as well as for genes that normally promote, rather than inhibit, 
tumor growth8,10,45,46. Finally, these applications of Tuba-seq 
may enable the investigation of genotype-specific therapeutic 
responses, ultimately leading to more precise and personalized 
patient treatment.

Methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Step-by-step protocol. Protocols for plasmid barcod-
ing and library preparation for Tuba-seq are available in the 
Supplementary Protocol and on Protocol Exchange47,48.

Mice and tumor initiation. KrasLSL-G12D (K), Lkb1flox (L), p53flox 
(P), R26LSL-Tomato (T), and H11LSL-Cas9 (Cas9) mice have been 
described8,19,49–51. Mice were on a mixed BL6/129 background. 
Equal numbers of males and females were used for each experi-
ment. The number of mice used in each experiment is specified in 
the corresponding figure legends and total number of mice used 
was 50. Lung tumors were initiated by intratracheal administra-
tion of viral-Cre vectors to mice as previously described18. Tumor 
burden was assessed by fluorescence microscopy, lung weight, 
and histology, as indicated. All experiments were performed in 
accordance with Stanford University Institutional Animal Care 
and Use Committee guidelines.

Generation of barcoded Lenti-mBC/Cre and Lenti-sgPool/Cre 
vector pools. To enable quantification of the number of cancer 
cells in individual tumors in parallel using high-throughput 
sequencing, we diversified lentiviral-Cre vectors with a short 
barcode sequence that would be unique to each tumor by vir-
tue of stable integration of the lentiviral vector into the initial 
transduced lung epithelial cell. We generated tumors in a variety 
of mouse backgrounds with two different pools of barcoded len-
tiviral vectors. The first was a pool of ~106 uniquely barcoded 
variants of Lenti-PGK-Cre (Lenti-millionBC/Cre; Lenti-mBC/Cre, 
generated by pooling six barcoded Lenti-U6-sgRNA/PGK-Cre 
vectors), which we used to analyze the number of cancer cells 
in tumors induced in KrasLSL-G12D/+;R26LSL-Tomato (KT), KrasLSL-
G12D/+;p53flox/flox;R26LSL-Tomato (KPT), and KrasLSL-G12D/+;Lkb1flox/
flox;R26LSL-Tomato (KLT) mice (Fig. 1). The second was a pool of 15 
barcoded Lenti-U6-sgRNA/PGK-Cre vectors, which we used to 
assess the tumor-suppressive effect of candidate tumor-suppressor  
genes in an oncogenic Kras genetic background by infecting 
KT;H11LSL-Cas9 (KT;Cas9) and KT mice. Our Lenti-sgInert/Cre 
vectors included three sgRNAs that target the NeoR gene within 
the Rosa26LSL-Tomato allele—these were actively cutting, but func-
tionally inert, negative control sgRNAs.

Design, generation, and screening of sgRNAs. We generated 
lentiviral vectors carrying Cre as well as an sgRNA targeting each 
of 11 known and putative lung adenocarcinoma tumor suppres-
sors: sgLkb1, sgP53, sgApc, sgAtm, sgArid1a, sgCdkn2a, sgKeap1, 
sgRb1, sgRbm10, sgSetd2, and sgSmad4. We also generated vectors 
carrying inert guides: sgNeo1, sgNeo2, sgNeo3, sgNT1, and sgNT3. 
All possible 20-bp sgRNAs (using an NGG protospacer-adjacent 
motif (PAM)) targeting each tumor-suppressor gene of interest 
were identified and scored for predicted on-target cutting effi-
ciency using an available sgRNA design/scoring algorithm10. For 
each tumor-suppressor gene, we selected three unique sgRNAs 
predicted to be the most likely to produce null alleles; prefer-
ence was given to sgRNAs with the highest predicted cutting effi-
ciencies as well as to sgRNAs targeting exons conserved in all 
known splice isoforms (ENSEMBL), closest to splice acceptor or 
splice donor sites, positioned earliest in the gene-coding region, 
occurring upstream of annotated functional domains (InterPro; 
UniProt), and occurring upstream of known human lung  

adenocarcinoma mutation sites20,31,52–55. Lenti-U6-sgRNA/Cre 
vectors containing each sgRNA were generated as previously 
described8. Briefly, Q5 site-directed mutagenesis (NEB E0554S) 
was used to insert sgRNAs into the parental lentiviral vector con-
taining the U6 promoter as well as PGK-Cre. The cutting efficiency 
of each sgRNA was determined by transducing LSL–YFP;Cas98 
cells with each Lenti-sgRNA/Cre virus. 48 h after transduction, 
flow cytometric quantification of YFP-positive cells was used to 
determine percent transduction. DNA was then extracted from 
all cells, and the targeted tumor-suppressor-gene locus was ampli-
fied by PCR.

PCR amplicons were Sanger sequenced and analyzed using 
TIDE analysis to quantify percent indel formation56. Finally, 
the indel percent determined by TIDE was divided by the per-
cent transduction of LSL–YFP;Cas9 cells (as determined by flow 
cytometry) to determine sgRNA cutting efficiency. The most effi-
cient sgRNA targeting each tumor-suppressor gene of interest 
was used for subsequent experiments. sgRNAs targeting Tomato 
and Lkb1 have been described7,8, and we previously validated an 
sgRNA targeting p53 (data not shown). Primer sequences used to 
amplify target indel regions for the top guides used in this study 
can be found in Supplementary Table 2.

Barcode diversification of Lenti-sgRNA/Cre. After identify-
ing the best sgRNA targeting each tumor suppressor of inter-
est, we diversified the corresponding Lenti-sgRNA/Cre vector 
with a known 8-nucleotide ID specific to each individual sgRNA 
(sgID; single underline) and a 15-nucleotide random barcode 
(BC; double underline) (see Fig. 4a). A universal reverse primer  
(5′ AGCTAGGGATCCGCCGCATAACCAGTG 3′) and bar-
coded forward primer (5′ AGCTAGTCCGGNNNNNNNNAA 
NNNNNTTNNNNNAANNNNNATGCCCAAGAAGAAGAGG
AAGGTGTC 3′) were used to PCR amplify a region of the Lenti-
PGK-Cre vector that included the 3′ end of the PGK promoter 
and the 5′ end of Cre. PCR was performed using PrimeSTAR HS 
DNA Polymerase (premix) (Clontech, R040A), and PCR products 
were purified using the Qiagen PCR Purification Kit (28106). The 
PCR insert was digested with BspEI (NEB, R0540) and BamHI 
(NEB, R0136) and ligated with the Lenti-sgRNA-Cre vectors cut 
with XmaI (NEB, R0180) (which produces a BspEI-compatible 
end) and BamHI.

To generate a large number of uniquely barcoded vectors, we 
ligated 300 ng of each XmaI, BamHI-digested Lenti-sgRNA-Cre vec-
tor with 180 ng of each BspEI, BamHI-digested PCR product using 
T4 Ligase (NEB, M0202L) and standard protocols (80 µl total reac-
tion volume). Ligations were PCR purified using the Qiagen PCR 
Purification Kit to remove residual salt. To obtain a pool of the great-
est possible number of uniquely barcoded Lenti-sgRNA/Cre vectors, 
1 µl of purified ligation was transformed into 20 µl of ElectroMAX 
DH10B cells (Thermo Fisher, 18290015). Cells were electro-
porated in 0.1 cm GenePulser/MicroPulser Cuvettes (Bio-Rad,  
165-2089) in a BD MicroPulser Electroporator (Bio-Rad,165-2100) 
at 1.9 kV. Cells were then rescued by adding 500 µl media and shak-
ing at 200 r.p.m. for 30 min at 37 °C. For each ligation, bacteria were 
plated on seven LB-Amp plates (one plate with 1 µl, one plate with 
10 µl, and five plates with 100 µl). The following day, colonies were 
counted on the 1 µl or 10 µl plate to estimate the number of colo-
nies on the 100 µl plates, and this was used as an initial estimation 
of number of unique barcodes associated with each ID.
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10 ml of liquid LB-Amp was added to each plate of bacteria to 
pool the colonies. Colonies were scraped off of the plates into the 
liquid, and all plates from each transformation were combined 
into a flask. Flasks were shaken at 200 r.p.m. for 30 min at 37 °C to 
mix. DNA was Midi prepped using the Qiagen HiSpeed MidiPrep 
Kit (12643). DNA concentrations were determined using a Qubit 
dsDNA HS Kit (Invitrogen, Q32851).

As a quality-control measure, the sgID-BC region from each 
Lenti-sgRNA-sgID-BC/Cre plasmid pool was PCR amplified 
with GoTaq Green polymerase (Promega M7123) following the 
manufacturer’s instructions. These PCR products were Sanger 
sequenced (Stanford PAN facility) to confirm the expected sgID 
and the presence of a random BC. Since BspEI and XmaI have 
compatible overhangs but different recognition sites, the Lenti-
sgRNA-sgID-BC/Cre vectors generated from successful liga-
tion of the sgID/BC lack an XmaI site. Thus, for pools that had 
a detectable amount of unbarcoded parental Lenti-sgRNA/Cre 
plasmid as determined by Sanger sequencing (>5%), we destroyed 
the parental unbarcoded vector by digesting the pool with XmaI 
(NEB, 100 µl reaction) using standard methods. These redigested 
plasmid pools were repurified using the Qiagen PCR Purification 
Kit, and concentration was redetermined by NanoDrop.

Generation of Lenti-mBC/Cre and Lenti-TS-Pool/Cre. To obtain 
a library with approximately 106 associated barcodes to use in 
our initial experiments in mice that lacked the H11LSL-Cas9 allele, 
we pooled six sgID-BC barcoded vectors (sgLkb1, sgp53, sgNeo1, 
sgNeo3, sgNT1, and sgNT3) to create Lenti-million Barcode/Cre 
(Lenti-mBC/Cre). We then pooled the barcoded Lenti-sgRNA-
sgID-BC/Cre vectors (sgLkb1, sgp53, sgApc, sgAtm, sgArid1a, 
sgCdkn2a, sgKeap1, sgNeo1, sgNeo2, sgNeo3, sgNT1, sgRb1, 
sgRbm10, sgSetd2, and sgSmad4) to generate Lenti-sgTS-Pool/Cre. 
All plasmids were pooled at equal ratios as determined by Qubit 
concentration before lentivirus production.

Production, purification, and titering of lentivirus. Lentiviral 
vectors were produced using polyethylenimine (PEI)-based 
transfection of 293T cells with the lentiviral vectors, delta8.2 and 
VSV-G packaging plasmids. Lenti-mBC/Cre, Lenti-sgTS-Pool/Cre, 
Lenti-sgTomato/Cre, Lenti-sgLkb1/Cre, Lenti-sgSetd2#1/Cre, 
Lenti-sgSetd2#2, Lenti-sgNeo2/Cre, and Lenti-sgSmad4/Cre were 
generated for tumor initiation. Sodium butyrate (Sigma Aldrich, 
B5887) was added at a final concentration of 0.2 mM 8 h after 
transfection to increase production of viral particles. Virus- 
containing media were collected 36, 48, and 60 h after trans-
fection, concentrated by ultracentrifugation (25,000 r.p.m. for 
1.5–2 h), resuspended overnight in PBS, and frozen at −80 °C.  
Concentrated lentiviral particles were titered by infecting  
LSL–YFP cells (a gift from A. Sweet-Cordero, University of 
California, San Francisco), determining the percent YFP-posi-
tive cells by flow cytometry, and comparing the infectious titer 
with a lentiviral preparation of known titer.

Generation of ‘benchmark’ cell lines. Three uniquely barcoded 
Lenti-Cre vectors with the sgID “TTCTGCCT” were used to gen-
erate benchmark cell lines that could be spiked into each bulk-
tumor-bearing lung sample at a known cell number to enable 
the calculation of the neoplastic cell number within each tumor. 
Plasmid DNA from individual bacterial colonies was isolated 

using the Qiagen QIAprep Spin Miniprep Kit (27106). Clones 
were Sanger sequenced, lentivirus was produced as described 
above, and LSL–YFP cells were infected at a very low multiplicity 
of infection, such that approximately 3% of cells were YFP positive 
after 48 h. Infected cells were expanded and sorted using a BD 
Aria II (BD Biosciences). YFP-positive sorted cells were replated 
and expanded to obtain a large number of cells. After expansion, 
cells were reanalyzed for percent YFP-positive cells on a BD LSR II 
analyzer (BD Biosciences). Using this percentage, the number of 
total cells needed to contain 5 × 105 integrated barcoded lentiviral 
vectors was calculated for each of the three cell lines, and cells 
were aliquoted and frozen based on this calculation.

Summary of all mouse infections. Refer to Supplementary 
Table 3.

Isolation of genomic DNA from mouse lungs. For experiments 
in which barcode sequencing was used to quantify the number of 
cancer cells in each tumor, the whole lungs from each mouse were 
homogenized using a Fisher TissueMeiser. 5 × 105 cells from each 
of the three individually barcoded benchmark cell lines were added 
before homogenization. Tissue was homogenized in 20 ml lysis 
buffer (100 mM NaCl, 20 mM Tris, 10 mM EDTA, 0.5% SDS) with 
200 µl of 20 mg/ml Proteinase K (Life Technologies, AM2544). 
Homogenized tissue was incubated at 55 °C overnight. To main-
tain accurate representation of all tumors, DNA was phenol– 
chloroform extracted and ethanol precipitated from ~1/10th of the 
total lung lysate using standard protocols. For lungs weighing less 
than 0.3 g, DNA was extracted from ~1/5th of the total lung lysate, 
and for those weighing less than 0.2 g, DNA was extracted from 
~3/10th of the total lung lysate to increase DNA yield.

Preparation of sgID-BC libraries for sequencing. Libraries 
were prepared by amplifying the sgID-BC region from 32 µg of 
genomic DNA per mouse. The sgID-BC region of the integrated 
Lenti-sgRNA-BC/Cre vectors was PCR amplified using one of 24 
primer pairs that contain TruSeq Illumina adapters and a 5′ mul-
tiplexing tag (TruSeq i7 index region indicated by underline). 
This amplification protocol uses a universal forward primer (5′ 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTGCGCACGTCTGCCGCGCTG 3′) 
and a unique reverse primer (5′ CAAGCAGAAGACGGCATAC
GAGATNNNNNNGTGACTGGACTTCAGACGTGTGCTCTT
CCGATCCAGGTTCTTGCGAACCTCAT 3′).

We used a single-step PCR amplification of sgID-BC regions, 
which we found to be a highly reproducible and quantitative 
method to determine the number of neoplastic cells in each 
tumor. We performed eight 100 µl PCR reactions per mouse (4 µg 
DNA per reaction) using OneTaq 2X Master Mix with Standard 
buffer (NEB, M0482L) with the following PCR program: (Step 1) 
94C 10 min, (Step 2) 94C 30 s, (Step 3) 55C 30 s, (Step 4) 68C 30 s,  
(Step 5) go back to step 2 (34 x), (Step 6) 68C 7 min, (Step 7) 4C 
infinity. Pooled PCR products were isolated by gel electrophoresis 
and gel extracted using the Qiagen MinElute Gel Extraction kit.  
The concentration of purified PCR products from individual  
mice was determined by Bioanalyzer (Agilent Technologies) 
and pooled at equal ratios. Samples were sequenced on an 
Illumina HiSeq to generate 100 bp single-end reads (ELIM 
Biopharmaceuticals, Inc.).
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Identifying distinct sgRNAs and tumors via ultradeep sequenc-
ing. The unique sgID-BC identifies tumors. These sgID-BCs were 
detected via next-generation sequencing on an Illumina HiSeq. 
The size of each tumor, with respect to cell number, was expected 
to roughly correspond to the abundance of each unique sgID-BC. 
Because tumor sizes varied by factors larger than the rate of read 
sequencing errors, distinguishing true tumors from recurrent read 
errors required careful analysis of the deep-sequencing data.

To this end, tumors and their respective sgRNAs were identified 
in three steps: (i) abnormal and low-quality reads were discarded 
from the ultradeep sequencing runs, (ii) unique barcode pileups 
that we predicted to arise from the same tumor were bundled into 
groups, and (iii) cell number was estimated from these bundles 
in the manner that proved most reproducible.

Read preprocessing. Reads contained a two-component DNA 
barcode (an 8-nucleotide sgID and a 21-nucleotide barcode 
sequence that contains 15 random nucleotides) that began 49 
nucleotides downstream of our forward primer. We discarded 
unusual reads—specifically, those that lacked the flanking lenti-
viral sequences, those that contained unexpected barcodes, and 
those with high error rates. This was accomplished in three steps 
(Supplementary Fig. 2a):

1. � We examined the 12 lentiviral nucleotides immediately 
upstream and downstream of the sgID-BC. These 12 nucle-
otides were identified using pairs of adjacent 6-mer search 
strings, such that each 6-mer could tolerate one mismatch. 
Although we expected these 12 nucleotides to begin at posi-
tion 37 within the read, we did not require this positioning 
or leverage this information. A nested 6-mer approach (with 
two opportunities to identify the lentiviral sequences flank-
ing the sgID-BC) was used to minimize read discarding. For 
~7–8% of reads, this 2nd 6-mer match salvaged the read; 
i.e., the 6-mers immediately flanking the sgID-BC deviated 
from the reference sequence by more than one nucleotide, 
yet the 6-mers immediately outside of these inner 6-mer 
sequences were recognizable and allowed us to salvage the 
read and identify the barcodes. Salvaging reads is not par-
ticularly critical for estimating tumor sizes; however, it is 
critical for accurate estimation of read error rates, because 
the nonbarcoded regions of our reads were used to estimate 
sequencing error rates and, therefore, should not be biased 
against read errors.

2. � We then discarded reads in which the sgID-BC deviated in 
length by greater than two nucleotides in either direction. 
Because our first barcode was expected to contain one of the 
15 sgIDs, we discarded reads that did not match one of these 
15 sequences. One mismatch and one indel were permitted 
in the matching.

3. � We then end trimmed each read such that 18 bp flanked 
either end of the sgID-BC. We then filtered the trimmed 
reads according to quality score, retaining those that were 
predicted to contain no more than two sequencing errors57. 
We also discarded reads with uncalled bases in the second 
(random) barcode and rectified uncalled bases elsewhere.

In these three stages, 14% of reads were discarded at stage one, 
~7% at stage two, and <2% at stage three.

We then examined those reads that failed at each stage. By 
performing BLAST searches, we determined that those reads 
discarded at stage one often contained uninformative sequences 
corresponding to artifacts from either our preparation (Phi X bac-
teriophage genome and mouse genome) or other samples paired 
with us on the lane (common plasmid DNAs). In stage two, we 
found that reads with aberrant barcode lengths often contained 
large indels or had one or both of their sgID-BCs completely 
missing. Lastly, very few reads were discarded in stage three on 
account of the fact that internal regions of the reads exhibited 
higher quality scores than those of the termini of reads. As a con-
sequence of this trend, it is common practice to end trim reads 
before discarding those reads predicted to contain more than two 
sequencing errors25, as we did.

Clustering of unique read pileups via DADA2. sgID-BC reads 
were aggregated into sets of identical sequences and counted. 
The counts of unique DNA barcode pairs do not directly cor-
respond to unique tumors, because large tumors are expected to 
generate recurrent sequencing errors (Supplementary Fig. 2b). 
We therefore spent considerable effort developing a method to 
distinguish small tumors from recurrent sequencing errors aris-
ing from large tumors. Consider, for example, that a tumor of  
10 million cells will produce sequencing-error pileups that mimic 
a 10,000–100,000-cell tumor, if the error rate is 0.1–1% (a typi-
cal rate, given the limitations of PCR amplification and Illumina 
sequencing machines). DADA2 has previously been used to 
address this issue in barcoding experiments involving ultradeep 
sequencing12. However, because DADA2 was designed for ultra-
deep sequencing of full-length Illumina amplicons25, we had to 
tailor and calibrate it for our purposes.

In DADA2, the likelihood that barcode pileups will result from 
a recurrent sequencing error of a larger pileup depends upon (i) 
the abundance of the larger pileup, (ii) the specific differences in 
nucleotide sequence between the smaller and larger pileups, and 
(iii) the average quality scores of the smaller pileup at the variant 
positions.

Factors i and ii are at first considered heuristically (to maximize 
computational speed) and then more precisely (when needed) via 
a Needleman–Wunsch algorithm. DADA2 splits a cluster into 
two when the probability that a smaller pileup was generated by 
sequencing errors is less than Ω. This value therefore represents 
a threshold for splitting larger clusters. When this threshold is 
large, read pileups are split permissively (many called tumors, 
perhaps dividing large tumors); and when Ω is small, read pile-
ups are split restrictively (few called tumors, perhaps aggregating 
distinct small tumors).

The likelihood of sequencing errors was inferred from our 
ultradeep sequencing data. Phred quality scores provide a theo-
retical estimate of sequencing error rates; however, these estimates 
tend to vary from Illumina machine to Illumina machine and 
do not account for the specifics of our protocol (including, e.g., 
occasional errors introduced via PCR amplification despite our 
use of high-fidelity polymerase). Ordinarily, DADA2 will esti-
mate sequencing error rates simultaneously with the unique DNA 
clusters; however, our lentiviral constructs had nondegenerate 
regions outside of our sgID-BC region that were used to estimate 
sequencing error rates directly. Moreover, estimating error rates 
and barcode clusters jointly is more computationally intensive, 
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requiring greater than 20,000 central processing unit (CPU) h for 
clustering our entire data set and exploring the relevant cluster-
ing parameters.

A sequencing error model was trained to each Illumina  
machine by:

1. � Generating training pseudoreads by concatenating the 18 
nucleotides immediately upstream of our sgID-BC with the 
18 nucleotides immediately downstream of the barcodes.

2. � Clustering these pseudoreads using a single run of DADA2.
3. � Using the error rates estimated from this training run to 

cluster the sgID-BC using a single run of DADA2.

We used a very low value of Ω = 10−100 to estimate sequencing 
errors in the training run, as we expected only one cluster of len-
tiviral sgID-BC-flanking sequences. Altering this value does not 
affect training results appreciably, but we nonetheless occasionally 
observed very small derivative clusters from our lentiviral sequence 
even at this value. These derivative clusters are presumably rare 
DNA artifacts and never amounted to >2% of our processed reads. 
We used a very stringent DADA2 run to estimate sequencing 
errors, because a more permissive threshold might overfit sequenc-
ing errors and underestimate sequencing error rates, while the less 
permissive approach of estimating error rates directly from each 
read’s deviance from expectation (akin to a DADA2 run where Ω 
= 0) would not accommodate any DNA artifacts in our data and, 
therefore, would overestimate sequencing error rates.

We trained sequencing error rates on each Illumina machine used 
in this study (seven in total). Training allowed the probability of 
every substitution type (A→C, A→T, etc.) to be estimated. The error 
rates as a function of Phred quality score were determined using 
LOESS regression of the available data (Supplementary Fig. 2c)25.  
In general, error rates were approximately two to three times higher 
than predicted by the Phred quality scores for transversions (and 
approximately consistent with expectations for transitions). This 
elevated error rate is typical25 and may reflect miscalibration of the 
machines and/or be due to mutations introduced during PCR.

We then clustered the dual barcodes that passed our preprocess-
ing filters using DADA2. Barcodes were given seven nucleotides 
of nondegenerate lentiviral flanking regions so that any indels 
within the barcodes could be identified (without adequate flank-
ing sequences, DNA alignment algorithms sometimes miscall 
indels as multiple point mutations). During clustering, we also 
required (i) that clusters deviate from each other by at least two 
bases (MIN_HAMMING_DISTANCE = 2), (ii) that new clusters 
only be formed when pileup size exceeded expectations under the 
error process by at least a factor of two (MIN_FOLD = 2), and (iii) 
that the Needleman–Wunsch algorithm consider only alignments 
with at most four net insertions or deletions (BAND_SIZE = 4, 
VECTORIZED_ALIGNMENT = FALSE). None of these choices 
affected the results appreciably, but they increased computational 
performance and offered additional verification that barcodes 
were aggregated into tumors of reasonable size.

Vetting and calibration of pipeline. We sequenced our first PCR-
amplified, multiplexed DNA libraries (from KT, KLT, and KPT 
tumors) in triplicate to vet and design our tumor-calling approach.

Reproducibility was measured in three ways: (i) by measuring 
correlation between estimated cell abundances for all barcodes 

and all mice, (ii) by measuring the variation in the number of 
lesions called for each sgID in each mouse in our first experiment, 
and (iii) by measuring the variation in LN mean size for each 
sgID—a value that should be constant in mice that do not express 
Cas9. Because the read depth of our triplicate run naturally varied 
(40.1 × 106, 22.2 × 106, and 34.9 × 106 reads after preprocessing), 
these three runs were performed on distinct Illumina machines 
with different sequencing error rates; and, because our initial len-
tiviral pool contained six different sgIDs with varying levels of 
barcode diversity, the technical variability in our vetting process 
approximated the technical variability of later experiments. In our 
tumor-size analysis pipeline, we found:

1. � The mean abundance of our three ‘benchmark’ DNA bar-
codes was more reproducible between replicate runs than 
was the median abundance. Thus, this mean value of bench-
mark read abundance (corresponding to 500,000 cells) was 
used to convert read abundance into the absolute cell number 
of cancer cells in each tumor (Supplementary Fig. 3).

2. � Ignoring reads with ≥2 errors from the consensus barcode 
of a cluster improved reproducibility. Typically, ~80–90% 
of reads in a barcode cluster were exact matches to the 
consensus barcode; while ~5% of reads were single errors 
from this read, and ~5–15% of reads deviated at ≥2 errors. 
These reads, with ≥2 errors, were poorly correlated between  
replicate runs and hampered our ability to reproducibly  
estimate absolute cell number/tumor size.

3. � The cluster-splitting proclivity of DADA2 was thresholded at 
Ω = 10−10, and we required that lesions contain ≥500 cells for 
Figures 1–3 and ≥1,000 cells for Figures 4–5 to maximize repro-
ducibility between replicate runs (Supplementary Fig. 2d–f).  
Threshold parameters with high specificity (small Ω, high 
minimum cell number) called lesion sizes more reproducibly, 
whereas threshold parameters with high sensitivity (large 
Ω, low minimum cell number) called lesion quantities more 
reproducibly. Overprioritizing only one facet of reproduc-
ibility would be imprudent. With two thresholds, considering 
different facets of measurement error, we better balanced 
these competing priorities.

With this pipeline, we interrogated the diversity of the barcode 
in our screen in several ways. First, we confirmed that nucleotides 
in this barcode were evenly distributed among A’s, T’s, C’s, and G’s 
(Supplementary Fig. 4b). Second, we found no evidence for an 
excess of repeated strings (e.g., AAAAA sequences). Third, we cal-
culated the number of random barcodes paired to each sgID in our 
lentiviral pool. Because of the large number of uniquely barcoded 
variants of each vector that we generated through our barcode liga-
tion approach (see “Barcode diversification of Lenti-sgRNA/Cre”), 
most barcodes that exist in our lentiviral pool were never detected 
in any lesions in any of the experiments (because diversity is much 
higher that total lesion number). Nonetheless, we still inferred the 
amount of barcode diversity from the observed barcodes.

To infer the barcode diversity of each sgID, we assumed that the 
probability of observing a barcode in i mice is Poisson distributed; 
P(k = i; λ) = λke−λ/k!, where λr = Lr/Dr is a ratio of the number of called 
lesions Lr for each sgID r in our entire data set (a known quantity) 
divided by the total number of unique barcodes Dr for each sgID 
(our quantity of interest). By noting that λr/(1 – e−λr) = µnonzero,  
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where µnonzero = Σi = 1
P(k = i; λr) is simply the mean number 

of occurrences of each barcode that occurred once or more, we 
calculated Dr. Across our entire data set, the average probability 
of the same barcode initiating two distinct tumors in the same 
mouse was 0.91%.

Good barcode diversity is also demonstrated by the highly 
reproducible mean size of the six sgIDs in the Lenti-mBC/Cre 
experiment. If barcode diversity was low, and barcodes overlapped 
often within a mouse, then the mean sizes of the less diverse 
sgIDs would increase—as two distinct tumors with the same 
barcode would be bundled together. However, the mean sizes of 
tumors containing each sgID vary by <1% within replicate mice, 
thus refuting the possibility that variation in barcode diversity 
causes overbundling of tumors. We also assessed our ability to 
call sgIDs accurately, despite sequencing errors, by processing 
deep-sequencing runs in two ways—by identifying each read’s 
cognate sgID before clustering based on the raw read sequence or 
by identifying cognate sgIDs after clustering based on the consen-
sus sequence of the cluster. Using either approach, 99.8% of reads 
paired to the same cognate sgID, which provided assurance that 
sgIDs were accurately identified. We opted to employ the latter 
(after clustering) approach for our final analysis.

By thoroughly developing and vetting our tumor-calling pipe-
line, we salvaged an extra decade of size resolution (i.e., we could 
faithfully resolve tumors that were ten-fold smaller than we would 
have otherwise been able to resolve). Our three DNA benchmarks 
(added to the lung samples at the very beginning of DNA prepara-
tion) (Supplementary Fig. 3) offer a glimpse of this resolution. 
Sequencing errors of the DNA benchmarks are easily identified 
by the DNA benchmark’s unique sgID and known secondary bar-
codes. While these sequencing errors are usually discarded, we 
can treat them as ordinary read pileups and observe the properties 
of potential sequencing errors. Without our calibrated analysis 
pipeline, the sequencing errors appear as lesions of ~103 cells; 
with our pipeline, these sequencing errors emerge as lesions of 
~102 cells—below our minimum cell threshold (Fig. 2a).

More importantly, our pipeline is robust to technical pertur-
bations. We more intensively profiled reproducibility with two 
additional technical perturbations in two specific mice from 
the first experiment. First, a KLT 11-week mouse (JB1349) was 
sequenced at great depth and then randomly downsampled ten-
fold to typical read depth (this downsampling was greater than any 
variability in read depth actually detected throughout our study). 
Lesion sizes were very highly correlated in this first perturbation 
(Supplementary Fig. 4e,f). Additionally, a KT 11-week mouse 
(IW1301) was amplified in two PCR reactions with different mul-
tiplexing tags (Fig. 2b,c). PCR and multiplexing appear to hamper 
reproducibility more than read depth, although reproducibility is 
good overall. These mice also display two encouraging reproduci-
bility trends: (i) larger lesions/tumors were most consistent between 
replicates, and (ii) the overall shapes (histogram) of tumor lesion 
sizes were better correlated between the replicates than between 
individual tumors. The excellent reproducibility of size histograms 
suggests that noise in our tumor size calls is generally unbiased.

Minimizing the influence of GC amplification bias on tumor-
size calling. We define each tumor in our study by a size Tmrb cor-
responding to the mouse m that harbored it, the cognate sgRNA r  
identified by its first barcode, and a unique barcode sequence 

(consensus of the DADA2 cluster) b. Given the approximately log- 
normal structure of our data (Fig. 3d and Supplementary Note, Fig. 1a  
data not shown), we log transformed and normalized sizes such 
that τmrb = Ln(Tmrb/Emr[Tmrb]). Here Emr[Tmrb] = ΣbTmrb/Nmr is 
the expected lesion size for a given mouse m and sgRNA r, and we 
will use this notation for expectation values. This notation—where 
aggregated indices are dropped from subscripts—is used through-
out. GC biases were subtle; the coefficient of variation (CV) of 
Emr[Tmrb] was 5.0%. This marginal distribution still exhibited a 
subtle dependence on the GC content of the combined barcode 
sequence that was best described by a 4th-order least-squares 
polynomial fit f4 (b) of Eb[τmrb] (adjusted r2 = 0.994). The sgIDs 
were all designed with well-balanced GC content; however, the 
second barcode comprised random sequences. While the multi-
nomial process of generating barcodes made intermediate levels 
of GC content most common, some deviation of GC content was 
observed. Maximal values of f4 (b) arise at intermediate GC content, 
suggesting that PCR biases amplification toward template DNA of 
intermediate melting temperature. We subtracted the effects of this 
GC bias from log-transformed values: tmrb = Ln[Tmrb] – f4(b). This 
correction alters tumor sizes by 5% on average.

Analysis of indels at target sites. To confirm CRISPR–Cas9-
induced indel formation in vivo, the targeted region of each gene 
of interest was PCR amplified from genomic DNA extracted from 
bulk-tumor-bearing lung samples using GoTaq Green polymer-
ase (Promega M7123) and primer pairs that yield short amplicons 
amenable to paired-end sequencing. Primers can be found in 
Supplementary Table 4.

PCR products were either gel extracted or purified directly using 
the Qiagen MinElute kit. DNA concentration was determined 
using the Qubit HS assay (Thermo Fisher, Q32851), following the 
manufacturer’s instructions. All 14 purified PCR products were 
combined in equal proportions for each mouse. TruSeq Illumina 
sequencing adapters were ligated on to the pooled PCR prod-
ucts with a single multiplexing tag per mouse using SPRIworks 
(Beckman Coulter, A88267) with standard protocols. Sequencing 
was performed on the Illumina HiSeq to generate single-end,  
150-bp reads (Stanford Functional Genomics Facility).

Custom Python scripts were used to analyze the indel sequenc-
ing data. For each of the 14 targeted regions, an 8-mer was selected 
on either side of the targeted region to generate a 46 bp region. 
Reads were required to contain both anchors, and no sequencing 
errors were allowed. The length of each fragment between the two 
anchors was then determined and compared with the expected 
length. Indels were categorized according to the number of base 
pairs inserted or deleted.

The percent of indels for each individual locus in each indi-
vidual mouse was calculated as follows: 

%Indels
Total reads wildtype reads

Total reads
=

−

Then the average percent of indels in the three Neo loci was 
calculated, and the percent of indels at every other targeted locus 
was normalized to this value to generate the percent of indels rela-
tive to Neo that are plotted in Supplementary Figure 12a.

Calculation of in vitro cutting efficiency using the Lenti-TS-
Pool/Cre virus. Cas9-expressing cell lines were infected with 
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Lenti-TS-Pool/Cre virus and harvested after 48 h. gDNA was 
extracted, and targeted loci were amplified using the above prim-
ers (see “Analysis of indels at target sites”). First, all primers were 
pooled, and 15 rounds of PCR were performed using GoTaq 
Green polymerase (Promega M7123). These products were then 
used for subsequent amplification with individual primer pairs  
as described above. Sequencing libraries were prepared as 
described above.

Histology, immunohistochemistry, and tumor analysis. 
Samples were fixed in 4% formalin and paraffin embedded. 
Immunohistochemistry was performed on 4 µm sections with 
the ABC Vectastain kits (Vector Laboratories) with antibodies 
against Tomato (Rockland Immunochemicals, 600-401-379), 
Smad4 (AbCam, AB40759) and Sox9 (EMD Milipore, AB5535). 
Sections were developed with DAB and counterstained with hae-
matoxylin. Haematoxylin and eosin staining was performed using 
standard methods.

Sections from lungs infected with Lenti-sgTomato/Cre were 
stained for Tomato, and tumors were scored as positive (>95% 
Tomato-positive cancer cells), Negative (no Tomato-positive can-
cer cells), or mixed (all other tumors). Tumors were classified and 
counted from a single section through all lung lobes from four 
independent mice.

Quantification of tumor area and barcode sequencing of 
tumors induced with Lenti-sgSetd2 and Lenti-sgNeo. Tumor-
bearing lung lobes from mice with Lenti-sgSetd2#1/Cre, Lenti-
sgSetd2#2/Cre or Lenti-sgNeo2/Cre-initiated tumors were fixed, 
embedded in paraffin, sectioned, and stained with haematoxylin 
and eosin. Percent tumor area was determined using ImageJ.

The distribution of the number of neoplastic cells in individual 
tumors in KT;Cas9 mice infected with Lenti-sgSetd2#1/Cre and 
Lenti-sgNeo2/Cre was assessed by Illumina sequencing of their 
respective lentiviral barcodes and subsequent Tuba-seq analysis 
as described above.

Western blotting for Lkb1 and Cas9. Microdissected Tomato-
positive lung tumors from KT and KT;Cas9 mice with Lenti-
sgLkb1/Cre initiated tumors were analyzed for Cas9 and Lkb1 
protein expression. Samples were lysed in RIPA buffer and 
boiled with LDS loading dye. Denatured samples were run on 
a 4–12% Bis–Tris gel (NuPage) and transferred onto a PVDF 
membrane. Membranes were immunoblotted using primary anti-
bodies against Hsp90 (BD Transduction Laboratories, 610419), 
Lkb1 (Cell Signaling, 13031P), Cas9 (Novus Biologicals, NBP2-
36440), and secondary HRP-conjugated anti-mouse (Santa 
Cruz Biotechnology, sc-2005) and anti-rabbit (Santa Cruz 
Biotechnology, sc-2004) antibodies.

Survival analysis of mice with Cas9-mediated inactivation 
of Smad4. To investigate tumor suppression by Smad4, KT and 

KT;Cas9 mice were infected intratracheally with 105 Lenti-
sgSmad4/Cre. Mice were sacrificed when they displayed visible 
signs of distress to assess survival.

Protocols and vectors. Protocols for generation of barcoded 
vectors and library preparation for Tuba-seq analysis have been 
uploaded to Protocol Exchange47,48, and the following unbarcoded 
Lenti-pLL3.3-sgRNA/Cre vectors are available via AddGene: 
Lenti-sgNT1/Cre (AddGene ID: 66895), Lenti-sgNT3/Cre 
(AddGene ID: 89654), Lenti-sgNeo1/Cre (AddGene ID: 67594), 
Lenti-sgNeo2/Cre (AddGene ID: 89652), Lenti-sgNeo3/Cre 
(AddGene ID: 89653), Lenti-sgSmad4/Cre (AddGene ID: 89651), 
Lenti-sgSetd2#1/Cre (AddGene ID: 89649), Lenti-sgSetd2#2/Cre  
(AddGene ID: 89650), Lenti-sgRbm10/Cre (AddGene ID: 89648),  
Lenti-sgRb1/Cre (AddGene ID: 89647), Lenti-sgp53/Cre 
(AddGene ID: 89646), Lenti-sgKeap1/Cre (AddGene ID: 89645), 
Lenti-sgCdkn2a/Cre (AddGene ID: 89644), Lenti-sgAtm/Cre 
(AddGene ID: 89643), Lenti-sgArid1a/Cre (AddGene ID: 89642), 
Lenti-sgApc/Cre (AddGene ID: 89641), and Lenti-sgLkb1/Cre 
(AddGene ID: 66894).

Code availability. User-friendly code has been made available at 
https://github.com/petrov-lab/tuba-seq.

Data availability statement. Raw sequencing data is publicly 
available on GEO (GSE98207).
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